Triple Integration:
Cylindrical & Spherical
Coordinate Systems

Scott Surgent



This is a good one:

Example 1: Let solid S be a tetrahedron in the first octant with vertices (0,0,0), (2,0,0), (0,4,0) and (0,0,8).
Set up a triple integral [[f. f(x,y,2) dV and find the volume of the solid.

Solution: The equation of the plane that passes through the points (a, 0,0), (0, b, 0) and (0,0, ¢) is given by

X z
- + % + o= 1.  (See Example 13.6 in my notes)

Thus, the equation of the plane passing through (2,0,0), (0,4,0) and (0,0,8) is



If the inside integral is chosen to be evaluated with respect to z, then solve for z, getting z = 8 — 4x — 2y.

The boundsare 0 < z < 8 — 4x — 2y.

This leaves a triangular region in the xy-plane with vertices (0,0), (2,0) and (0,4), shown below.
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Integrating next with respect to y, the
bounds are 0 < y < 4 — 2x, and lastly, the
bounds on x are 0 <x < 2. The triple

Integral Is

2 r4-2x ,8—4x-2y
j J J f(x,y,z)dzdydx.
0o Jo 0



The volume of the tetrahedron is This is then integrated with respect to x:

2

2 r4-2x 8—4x-2y 2 4
f J j 1dzdydx j (4x%2 —16x + 16) dx = |=x3 — 8x?% + 16x]
0 Jo 0 0 3 0

The inner integral is 4
=3 (2)3-8(2)2+16(2) -0

8—4x—2y
j 1dz =8—4x — 2y.
0

_ 32 32 + 32
3
This is then integrated with respect to y: 37
e 3
j (8 —4x — 2y) dy = [8y — 4xy — y2]¢™**
0

=84 —2x)—4x(4—-2x)— (4 —2x)*> -0

= 4x% — 16x + 16



Example 2: A cylinder, x? + z? = 1, is intersected by the planes y +z=1 and y —z = —1. Find the
volume of this intersecting region.

Solution: Below is a sketch of the region.

Note that the cylinder x? + z2 = 1 can be viewed as a circle of radius 1, centered at the origin, on the xz-
plane, then extended into the positive and negative y directions.

The planes y+2z =1 and y—z = —1 can be viewed as lines on the yz-plane, then extended into the
positive and negative x directions.




Visualize an arrow in the positive y direction.
It enters the solid through the planey —z = —-1,0ry; = z — 1.
It exits the solid through the planey +z=1,0ry, =1 — z.

Note that variables x and z form a circular region on the xz-plane, and
this suggests we may want to exchange them for r and 6, and integrate
with respect to y first.

The bounds for r are 0 < r < 1 and the bounds for 8 are 0 < 6 < 2m.
An initial triple integral in cylindrical coordinates is given by

2w 1 ,1-2z
f f j (1) dyrdrd?f.
0 0 Jvz-1

}J—E‘:—'l

v+z=1



The bounds for y need to be written in terms of r and 6.

If we define x = r cos 8 and z = r sin 8, the triple integral is now written as

2w 1 ,1-rsiné6
j j j (1) dyrdrdé.
0 0 Yrsinf-1

The inside integral is evaluated first:

1-r sin 6 _
J (D dy = [yt sin8 = (1 —rsin@) — (rsinf — 1) = 2 — 2rsiné.
r

sin 6—1



This is integrated with respect to r:

: L 2 ! 2
f (2—2rsin9)rdr=f (2r — 2r?sin9) dr=[r2—§r3sin9] =1—§sin9.
0 0 0

Finally, this is integrated with respect to 6
2T 2 2 2T
J (1—=sinf) d9=[9+—cos€]
0 3 3 0

2 2 =
= <(2n) + §cos(2n)> - <(0) + §cos(0)> {f;i?iloti%t)cisfﬂ) 1



Spherical Coordinate System. A point P = (x,y, z) described by rectangular coordinates in R can also be
described by three independent variables, p (rho), 8 and ¢ (phi), whose meanings are given below:

p: the distance from the origin to P.
0: the angle from the positive x-axis to the line connecting the origin to the point (x, y, 0).
¢: the angle from the positive z-axis to the line connecting the origin to P.

Descriptively, p (rho) is the spherical radius, 8 is the “sweep” or “azimuth” angle of the point’s projection onto
the xy-plane relative to the positive x axis, and ¢ (phi) is the “lean” angle of the point relative to the positive z-
axis.
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These three variables comprise the spherical coordinate system and are best used to describe regions in R3 that are

spheres, or parts of a sphere. For such regions, the bounds of p, 8 and ¢ will be constants. The common restrictions on p,
0 and ¢ are:

p=0, 0<6<2m, 0<¢p<m.

The variable ¢ can be thought of as the “lean” of the line connecting the origin to P relative to the positive z-axis.

If ¢ = 0, then P lies on the positive z-axis.

If p = g then P lies on the xy-plane, which is at right angles to the positive z-axis.
If ¢ = m, then P lies on the negative z-axis.

The conversion formulas between rectangular coordinates (x, y, z) and spherical coordinates (p, 6, ¢) are:

[2 2
p=\/x2+y2+zz, 9=arctan(§), qb=arctan< x +y>.

Z

x =psingpcosf, y=psingsinf, z = pcosda.



Example 3: Convert the rectangular coordinate (2,5,3) into spherical coordinates.

Solution: This point lies above the first quadrant of the xy-plane. Thus, we expect that both 8 and ¢ will be
in the intervals 0 < 6 < ~and 0 < ¢ <.

p=\/22+52+32=\/§,

5
@ = arctan (E) ~ 1.1903 radians,

~ 1.0625 radians.

(m)

¢ = arctan

Since% ~ 1.571, the values for 8 and ¢ are plausible.



Example 4: Convert the rectangular coordinate (—3, —4, —2) into spherical coordinates.

Solution: This point lies below the third quadrant of the xy-plane. We expect that 8 will be in the interval m <
6 < 37” and that ¢ will be in the interval — < ¢ < 7. We have

—4 4
p =+/(=3)2+(—4)2+(=2)2= /29, @ = arctan (—) = arctan (—) ~ (0.9273 radians,

-3 3

V(=3)*+(=H)?
—2

5
¢ = arctan( > = arctan (_E> ~ —1.1903 radians.
The current value for 6 is incorrect. The value of 0.9273 radians places 9 in the first quadrant. Thus, add m, so

that the correct value for 6 i1s 0.9273 + 3.1416 ~ 4.0689 radians, which is in the in the interval T < 8 < 37” as
desired.



Furthermore, we can rewrite ¢ so that it is in the interval % < ¢ <m Weaddmto¢p =~ —1.1903, getting
—1.1903 + 3.1416 = 1.9513 radians, which is an angle in the desired interval.

To summarize, the point (—3,—4, —2) in rectangular coordinates is equivalent to the point (p, 8, ¢) =
(vV29,4.0689,1.9513) in spherical coordinates.

Example 5: Describe the solid sphere of radius 2 centered at the origin using spherical coordinates.

Solution: The solid sphere of radius 2 is described by

0<p<2 0<60<2m, 0<Pp<m



Example 6: Describe p = 3, with0 <6 <2mand 0 < ¢ < m.

Solution: This is a sphere of radius 3, centered at the origin. Had we set 0 < p < 3, this would describe the
solid sphere of radius 3.

Converting back to rectangular coordinates, this same spherical surface is given by
X = 3sin¢ cos b
y =3singsinf

z=3cos o,

With0 <9 <2mand0< ¢ <.



Th lan of spherical int tion.
e Jacobian of spherical integration Extend each value by a small amount, Ap, A8 and A¢.

Let (p, 0, ¢) be a pointin R3 This forms a “spherical rectangular solid”:

*(p,6,9)
¢
p
¢
T
0 T “~psin ¢ A8
p sin @

Use geometry to find the arc lengths as shown.



On small scales, the volume of this spherical volume element is the product of the three sides:

AV = (Ap)(p sin ¢ AG)(pAd).

Using differentials, we have the Jacobian for Spherical Integrals:
dV = p“sin¢p dp dbO do.

“rho squared sine phi, d rho d theta d phi”



Example 7: Evaluate this integral:

1 V1-x2 [ 1-x2-y2
J J f dzdy dx.
-1/ V1-x2J-[1-x2-y2
Solution: It is a sphere of radius 1.

From geometry, the volume of a sphere of radiusris V = %nrg’.

Thus, we should expect the answer is %n.

In spherical coordinates, the boundsare0 < p <1, 0<0<2mand0 < ¢ <.

The integral in spherical coordinates is

1 p2m ,m
J j j p?sin¢ dp db do.
o Jo Jo



From the last slide, we have

1 p2n 1
j j j p?sing dp do do.
o Jo Jo

These are constant bounds and the integrand is held by multiplication. So we can treat this as the product of

three single-variable integrals:
1 2T T
2d do '
(L) ([, o) ([ m¢)
-~ ([z+ ]) (013 ([ cos #1)

1
= (g) 2m)(—(-1) - (-1))

(2 2m) (2
—(§><n><
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