Conservative Vector Fields and the Fundamental Theorem of Line Integrals (FTLI)

Scott Surgent

Conservative Vector Fields (Gradient Fields) in R^2

Given a vector field $\mathbf{F}(x, y) = \langle M(x, y), N(x, y) \rangle$, then two cases result:

- If $M_y = N_x$, then **F** is conservative, and there exists a **potential function** f such that $\nabla f = \mathbf{F}(x, y)$.
- If $M_y \neq N_x$, then **F** is not conservative and no such potential function f exists.

Example 1: Show that $\mathbf{F}(x, y) = \langle 3x^2y^2, 2x^3y \rangle$ is conservative and find its potential function f(x, y).

Solution: From **F**, the components are $M(x, y) = 3x^2y^2$ and $N(x, y) = 2x^3y$. Now find M_y and N_x :

$$M_y = 6x^2y \quad \text{and} \quad N_x = 6x^2y.$$

Since $M_y = N_x$, then **F** is conservative, and there exists a function f(x, y) such that $f_x = 3x^2y^2$ and $f_y = 2x^3y$. Since we assume that $f_x = 3x^2y^2$, we integrate it with respect to x:

$$\int 3x^2 y^2 \, dx = x^3 y^2.$$

Since we assume $f_y = 2x^3y$, integrate it with respect to y:

$$\int 2x^3 y \, dx = x^3 y^2.$$

The potential function is $f(x, y) = x^3 y^2$. Check this by showing that $\nabla f = \langle 3x^2y^2, 2x^3y \rangle = \mathbf{F}(x, y)$.

Example 2: Determine if $\mathbf{F}(x, y) = \langle xy, 1 - x^2 \rangle$ is conservative. If it is, find its potential function f(x, y).

Solution: We have

$$M(x, y) = xy$$
 and $N(x, y) = 1 - x^2$.

Observe that

$$M_y = x$$
 and $N_x = -2x$.

Since $M_y \neq N_x$, vector field **F** is not conservative, and there does not exist a function whose gradient is **F**.

Example 3: Determine if $\mathbf{F}(x, y) = \langle y - 3, x + 2 \rangle$ is conservative. If it is, find a potential function *f*.

Solution: We have

$$M(x, y) = y - 3$$
 and $N(x, y) = x + 2$.

Observe that

$$M_y = 1$$
 and $N_x = 1$.

Since $M_y = N_x$, the vector field **F** is conservative. To determine f(x, y), integrate M(x, y) with respect to x:

$$\int (y-3) \, dx = xy - 3x.$$

Now integrate N(x, y) with respect to y:

$$\int (x+2) \, dy = xy + 2y.$$

The potential function is the union of these two functions: f(x, y) = xy + 2y - 3x.

Example 4: Given the conservative vector field

 $\mathbf{F}(x,y) = \langle 3x^2 + 2y, 2x - 2y \rangle,$

find the potential function, f(x, y).

Solution: Integrate $3x^2 + 2y$ with respect to x, and 2x - 2y with respect to y:

$$\int (3x^2 + 2y) \, dx = x^3 + 2xy \quad \text{and} \quad \int (2x - 2y) \, dy = 2xy - y^2.$$

The union of terms from these two antiderivatives is the potential function:

$$f(x,y) = x^3 + 2xy - y^2.$$

Example 5: A student is given the vector field $\mathbf{F}(x, y) = \langle x^2, xy \rangle$.

The student integrates x^2 with respect to x, getting $\int x^2 dx = \frac{1}{3}x^3$, and integrates xywith respect to y, getting $\int xy \, dy = \frac{1}{2}xy^2$.

The student concludes that the potential function is $f(x, y) = \frac{1}{3}x^3 + \frac{1}{2}xy^2$.

Explain the error.

Solution: Vector field **F** is *not* conservative since $M_y \neq N_x$.

Thus, there is no potential function that generates \mathbf{F} .

The Fundamental Theorem of Line Integrals (FTLI)

If **F** is a conservative vector field in R^2 with f(x, y) as its potential function, and *C* is a directed path with endpoints $a = (x_0, y_0)$ and $b = (x_1, y_1)$, then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = [f(x, y)]_a^b = f(b) - f(a) = f(x_1, y_1) - f(x_0, y_0).$$

In this case, there **is no need to parametrize the path**, as the value of the line integral depends only on the potential function evaluated at the endpoints, then subtracted in the usual manner of integration.

A couple of corollaries follow:

• Line integrals in a conservative vector field are *path independent*, meaning that any path from *a* to *b* will result in the same value of the line integral.

• If the path C is a simple loop, meaning it starts and ends at the same point and does not cross itself, and F is a conservative vector field, then the line integral is 0.

Proof.

Assume a vector field $\mathbf{F}(x, y)$ is conservative. That means there exists a function f(x, y) such that $\nabla f = \mathbf{F}$. This means that $\mathbf{F}(x, y) = \nabla f(x, y) = \left\langle \frac{df}{dx}, \frac{df}{dy} \right\rangle$.

Assume also that path C is parameterized in the usual way, where $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ where $a \le t \le b$.

Note that $\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \left\langle \frac{dx}{dt}, \frac{dy}{dt} \right\rangle$.

The line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ can then be written as $\int_a^b \nabla f \cdot \mathbf{r}'(t) dt$.

The dot product of $\nabla f \cdot \mathbf{r}'(t)$ is $\frac{df}{dx}\frac{dx}{dt} + \frac{df}{dy}\frac{dy}{dt}$.

This is the chain rule! We can write $\frac{df}{dx}\frac{dx}{dt} + \frac{df}{dy}\frac{dy}{dt}$ as $\frac{d}{dt}f(\mathbf{r}(t))$.

The line integral can be restated as $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \frac{d}{dt} f(\mathbf{r}(t))$.

By the Fundamental Theorem of Calculus, we have $\int_C \frac{d}{dt} f(\mathbf{r}(t)) = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$.

If F is conservative, you DON'T need to parameterize. You just find the potential function and plug in the endpoints.

If F is not conservative, then you must parameterize.

Example 6: Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle 3x^2y^2, 2x^3y \rangle$ and *C* is the line segment from a = (1, 2) to b = (4, -3).

Solution: From Example 1, we showed that **F** is conservative, and that a potential function is $f(x, y) = x^3y^2$. Therefore,

$$= (4)^3(-3)^2 - (1)^3(2)^2$$

= 576 - 4 = 572.

Note that we did not actually parametrize the line segment to solve this line integral.

Example 7: Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle y, x + 2y \rangle$ and *C* is a sequence of line segments from (1,3) to (2,7) to (-4,0) to (8,2).

Solution: Check first to see if **F** is conservative: $M_y = 1$ and $N_x = 1$.

Since $M_y = N_x$, then **F** is conservative, and it is not necessary to parametrize the sequence of line segments.

Find potential function f and evaluate it by using the FTLI. Note that

$$\int y \, dx = xy$$
 and $\int (x+2y) \, dy = xy+y^2$.

Thus, $f(x, y) = xy + y^2$ is the potential function (check it).

Therefore,

Because F is conservative, we
only need the endpoints!
$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = [xy + y^{2}]_{(1,3)}^{(8,2)} = ((8)(2) + (2)^{2}) - ((1)(3) + (3)^{2}) = 20 - 12 = 8.$$

All of the intermediate points were ignored. We only needed the starting and ending point of the path.

Example 8: Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle 2x, 3y^2 \rangle$ and *C* is given by $\mathbf{r}(t) = \langle t^2, 5t \rangle$ for $-1 \le t \le 3$.

Solution: Note that $M_y = 0$ and that $N_x = 0$. Since $M_y = N_x$, then **F** is conservative.

Since \mathbf{F} is conservative, the actual path of C is not relevant. We just need its two endpoints.

When t = -1, we have $\mathbf{r}(-1) = \langle (-1)^2, 5(-1) \rangle = \langle 1, -5 \rangle$, and when t = 3, we have $\mathbf{r}(3) = \langle (3)^2, 5(3) \rangle = \langle 9, 15 \rangle$.

Note that (1, -5) and (9,15) are vectors, but if their feet are placed at the origin, then their heads point to the ordered pairs (1, -5) and (9,15). In this way, the point as ordered pairs can be inferred from a vector.

The potential function is $f(x, y) = x^2 + y^3$.

Therefore, we have

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = [x^{2} + y^{3}]_{(1,-5)}^{(9,15)} = ((9)^{2} + (15)^{3}) - ((1)^{2} + (-5)^{3}) = 3580.$$
Remember, if F is conservative, we just need its potential function and the endpoints.
That's it. Nothing fancy.

Example 9: The contour map of z = f(x, y) is below, for $-4 \le x \le 4$ and $-4 \le y \le 4$. Suppose that vector field $\mathbf{F}(x, y) = \nabla f(x, y)$.

a) Evaluate
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
, where C is any path from (2,-1) to (-3,1).

Solution: From the contour map, we have z = f(2, -1) = 20 as the starting point, and z = f(-3, 1) = 35 as the ending point. By the FTLI, we have

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = [f(x, y)]_{(2, -1)}^{(-3, 1)} = f(-3, 1) - f(2, -1) = 35 - 20 = 15.$$

b) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is any path from (-1,0) to (-2,3), then to (3,-2).

Solution: use **F** is conservative, only the starting and ending points of the path are relevant. Note that f(-1,0) = 30 and that f(3,-2) = 15.

Thus, $\int_{C} \mathbf{F} \cdot d\mathbf{r} = 15 - 30 = -15$.

c) Evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$, where C is a circle of radius 2, centered at the origin.

Solution: Since **F** is a conservative vector field and *C* is a closed simple loop, then $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$.

Example 10: Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle x^2 + \frac{\pi}{6}y + \sin x, \frac{\pi}{6}x - \arctan \sqrt{y} \rangle$ and *C* is given by the path that starts at (2,5), goes on a straight line to (6,10), then follows a parabolic arc to (-4,9), then follows a brachistochrone to (18,13), then follows a tractrix to (17,11) and then follows a catenary back to (2,5).

Solution.

$$M_{\mathcal{Y}} = N_{\mathcal{X}}$$

Path starts and ends at the same point. Therefore.....

$$\int_C \mathbf{F} \cdot d\mathbf{r} =$$