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A rectangular region R in the xy-plane can be defined using compound inequalities, where x and y are each 

bound by constants such that 𝑎1 ≤ 𝑥 ≤ 𝑎2 and 𝑏1 ≤ 𝑦 ≤ 𝑏2. Let 𝑧 = 𝑓(𝑥, 𝑦) be a continuous function 

defined over a rectangular region R in the xy-plane. 

The notation 

ඵ
𝑅

𝑓 𝑥, 𝑦  𝑑𝐴

represents the double integral of 𝑧 = 𝑓(𝑥, 𝑦) over R. 

The 𝑑𝐴 represents “area element”, and is either 𝑑𝑦 𝑑𝑥 or 𝑑𝑥 𝑑𝑦. Thus, we can write 

ඵ
𝑅

𝑓 𝑥, 𝑦  𝑑𝐴 = න
𝑎1

𝑎2

න
𝑏1

𝑏2

𝑓(𝑥, 𝑦)  𝑑𝑦  𝑑𝑥 = න
𝑏1

𝑏2

න
𝑎1

𝑎2

𝑓(𝑥, 𝑦)  𝑑𝑥  𝑑𝑦.

Note that the bounds 𝑎1 and 𝑎2 correspond with the differential dx, and bounds 𝑏1 and 𝑏2 correspond with 

dy.



The value of a double integral can be approximated by Riemann sums adapted to the two-dimensional case. 

Interval 𝑎1 ≤ 𝑥 ≤ 𝑎2 is subdivided into m subdivisions (not necessarily of equal size) and interval 𝑏1 ≤ 𝑦 ≤
𝑏2 is subdivided into n subdivisions (again, not necessarily of equal size). 

If we define indices 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛, then we have a way to identify a particular subdivision within 

region R.

For example, if 𝑎1 ≤ 𝑥 ≤ 𝑎2 is subdivided into 4 subdivisions and 𝑏1 ≤ 𝑦 ≤ 𝑏2 is subdivided into 5 

subdivisions, then (𝑥2, 𝑦3) is a representative point within the 2nd subdivision of the x-interval and the 3rd 

subdivision of the y-interval, and 𝑓(𝑥2, 𝑦3) is the function evaluated at (𝑥2, 𝑦3).

Using this scheme, a double integral can be approximated by a double sum over 𝑖 and 𝑗:

ඵ
𝑅

𝑓 𝑥, 𝑦  𝑑𝐴 ≈ ෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑓 𝑥𝑖 , 𝑦𝑗  ∆𝑦 ∆𝑥  or ෍

𝑗=1

𝑛

෍

𝑖=1

𝑚

𝑓 𝑥𝑖 , 𝑦𝑗  ∆𝑥 ∆𝑦 .



Example 1: Use Riemann Sums to approximate  ׭𝑅
𝑥2𝑦 𝑑𝐴 where R is the rectangle 0 ≤ 𝑥 ≤ 3 and 

1 ≤ 𝑦 ≤ 5 in the xy plane. Subdivide the region R into subregions each with length 1 to a side, and from 

each subregion, choose x and y to be the “upper right” corner.

Solution: The rectangular region R is shown at right, subdivided into subregions, so 

that ∆𝐴 = ∆𝑥 ∆𝑦 = 1 1 = 1. There are 12 such subregions.

Then choose a representative point 𝑥𝑖 , 𝑦𝑗  within each subregion. In this example, 

we choose 𝑥𝑖 , 𝑦𝑗  to be the “upper right” point within each subregion (this is an 

arbitrary choice. We could choose the “lower left” or the “middle point”, and so 

on). Here, 1 ≤ 𝑖 ≤ 3 and 2 ≤ 𝑗 ≤ 5, the bounds chosen for convenience.



Next, evaluate the integrand 𝑧 = 𝑓 𝑥, 𝑦 = 𝑥2𝑦 at the representative points 𝑥𝑖 , 𝑦𝑗 :

𝑓 1,5 = 5 𝑓 2,5 = 20 𝑓 3,5 = 45

𝑓 1,4 = 4 𝑓 2,4 = 16 𝑓 3,4 = 36

𝑓 1,3 = 3 𝑓 2,3 = 12 𝑓 3,3 = 27

𝑓 1,2 = 2 𝑓 2,2 = 8 𝑓 3,2 = 18

Visually, we have a surface 𝑧 = 𝑓 𝑥, 𝑦 = 𝑥2𝑦 “above” the xy-plane. Each subregion in R is the base of a 

rectangular box whose height is the function value shown in the table above. Each box has a volume of 

𝑓 𝑥𝑖 , 𝑦𝑗  𝑑𝐴. Since 𝑑𝐴 = 𝑑𝑥 𝑑𝑦 = 1 1 = 1 in each case, each box has volume 𝑓 𝑥𝑖 , 𝑦𝑗 × 1, or simply 

𝑓 𝑥𝑖 , 𝑦𝑗 . The value of ׭𝑅
𝑥2𝑦 𝑑𝐴 is approximated by the sum of the volumes of the rectangular boxes 

contained within it. Thus, 

ඵ
𝑅

𝑥2𝑦 𝑑𝐴 ≈ ෍

𝑖=1

3

෍

𝑗=2

5

𝑓 𝑥𝑖 , 𝑦𝑗  ∆𝑦 ∆𝑥

= 2 + 8 + 18 + 3 + 12 + 27 + 4 + 16 + 36 + 5 + 20 + 45

= 196.



Note that if we chose the representative point to be the lower-left corner of each subregion, we would find 

that the Riemann Sum is 50. 

The mean,
196+50

2
= 123, is a reasonable approximation of ׭𝑅

𝑥2𝑦 𝑑𝐴.

Example 2: Use Riemann Sums to approximate 

𝑅׭
𝑔 𝑥, 𝑦  𝑑𝐴, where 𝑔 is shown by the contour map. 

Let the region of integration R be given by −4 ≤ 𝑥 ≤ 4,
−6 ≤ 𝑦 ≤ 6, and let ∆𝑥 = 2 and ∆𝑦 = 2. Use the middle 

point within each subregion.



Solution: The region R is identified and then subdivided into 2 × 2 subregions (lower left, boldfaced). Then 

the middle point 𝑥𝑖 , 𝑦𝑗  from within each subregion is identified (lower right):



The values of 𝑧 = 𝑔(𝑥, 𝑦) are estimated from the contour map. For example, in the top tier of subregions, 

reading left to right and using the middle points, the values of 𝑔 are approximately 𝑔 −3,5 =
37, 𝑔 −1,5 = 46, 𝑔 1,5 = 55 and 𝑔 3,5 = 60.

Each of these subregions is the base of a rectangular box whose heights are given by the 𝑧𝑖 = 𝑔(𝑥𝑖 , 𝑦𝑗) 

values. Each box then has a volume of 𝑔 𝑥𝑖 , 𝑦𝑗  𝑑𝐴. Since 𝑑𝐴 = (2)(2) = 4, each box has a volume of 

𝑔 𝑥𝑖 , 𝑦𝑗 × 4.

The approximate values of 𝑔(𝑥𝑖 , 𝑦𝑗) are shown below in an array that matches the orientation of the 

subregions in the previous figure:



Thus, the approximate value of ׭𝑅
𝑔 𝑥, 𝑦  𝑑𝐴 is the sum of all the 𝑔(𝑥𝑖 , 𝑦𝑗) values in the array above, 

multiplied by 4:

ඵ
𝑅

𝑔 𝑥, 𝑦  𝑑𝐴 ≈ 4
37 + 46 + 55 + 60 + 27 + 34 + 42 + 49 + 22 + 27 + 33 + 40

+ 16 + 23 + 28 + 34 + 13 + 20 + 25 + 31 + 11 + 18 + 25 + 29
,

which is about 2,980 cubic units.



A double integral is evaluated “inside out”—that is, the inside integral is evaluated first, then that result 

becomes the integrand of the outer integral, which is then evaluated.

Example 3: Evaluate ׭𝑅
𝑥2𝑦 𝑑𝐴 where R is the rectangle 0 ≤ 𝑥 ≤ 3 and 1 ≤ 𝑦 ≤ 5.

Solution: We can choose either the 𝑑𝑦 𝑑𝑥 ordering or the 𝑑𝑥 𝑑𝑦 ordering. Let’s choose 𝑑𝐴 = 𝑑𝑥 𝑑𝑦. Thus, 

we have 

ඵ
𝑅

𝑥2𝑦 𝑑𝐴 = න
1

5

න
0

3

𝑥2𝑦 𝑑𝑥 𝑑𝑦 .

Integrate the inner integral with respect to x, treating y as a constant:

න
0

3

𝑥2𝑦 𝑑𝑥 =
1

3
𝑥3𝑦

0

3

=
1

3
𝑦 33 − 03 = 9𝑦.

Now we integrate the result with respect to y:

1׬

5
9𝑦 𝑑𝑦 =

9

2
𝑦2

1

5
=

9

2
52 − 12 = 108.



If we chose 𝑑𝐴 = 𝑑𝑦 𝑑𝑥, we have the following:

න
0

3

න
1

5

𝑥2𝑦 𝑑𝑦 𝑑𝑥 .

The inner integral is determined first with respect to y, treating x as a constant temporarily:

න
1

5

𝑥2𝑦 𝑑𝑦 = 𝑥2
1

2
𝑦2

1

5

=
1

2
𝑥2 5 2 − 1 2 =

1

2
𝑥2 24 = 12𝑥2.

This result is now integrated with respect to x:

න
0

3

12𝑥2  𝑑𝑥 = 4𝑥3
0
3 = 4 3 3 − 0 3 = 4 27 = 108.

Both orderings of the differentials gives the same result, 108, as expected. This is the volume of the solid 

bounded below by the region of integration R and above by the surface 𝑧 = 𝑥2𝑦.



Example 4: The density of a city’s population is given by 𝑃 𝑥, 𝑦 = 0.2𝑥2 + 0.1𝑦3, where x and y are in 

miles, and 𝑃 is on thousands of people per square mile. Assume that the city is a rectangle measuring 6 miles 

east to west (x), and 4 miles north to south (y), and that 𝑥 = 0 and 𝑦 = 0 is the southwestern corner of the city’s 

boundaries. Find the city’s population.

Solution: The city’s population is given by the double integral:

න
0

4

න
0

6

0.2𝑥2 + 0.1𝑦3  𝑑𝑥 𝑑𝑦 .

Evaluating the inside integral with respect to x first, we have

න
0

6

0.2𝑥2 + 0.1𝑦3  𝑑𝑥 =
0.2

3
𝑥3 + 0.1𝑥𝑦3

0

6

=
0.2

3
6 3 + 0.1 6 𝑦3 −

0.2

3
0 3 + 0.1 0 𝑦3

= 14.4 + 0.6𝑦3.



This is then integrated with respect to y:

න
0

4

14.4 + 0.6𝑦3  𝑑𝑦 = 14.4𝑦 +
0.6

4
𝑦4

0

4

= 14.4(4) +
0.6

4
(4)4 − 14.4(0) +

0.6

4
(0)4

= 96.

Thus, the city has about 96,000 people within its boundaries.



The average value of a multivariable function 𝑧 = 𝑓(𝑥, 𝑦) over a region 𝑅 is given by

𝑓𝑎𝑣 =
1

𝐴 𝑅
ඵ

𝑅

𝑓 𝑥, 𝑦  𝑑𝐴 ,

where 𝐴(𝑅) is the area of region 𝑅.

Example 5: Find the average value of the result in the previous example and explain its meaning in context.

Solution: The region 𝑅 has an area of 6 4 = 24 square miles. 

Thus, the average value of  𝑃 𝑥, 𝑦 = 0.2𝑥2 + 0.1𝑦3 over 𝑅 is 𝑃𝑎𝑣 =
1

24
96 = 4. 

The city has an average density of about 4,000 people per square mile.
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