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There are three types of line integrals, each answering a different question.

A scalar line integral gives the area of a sheet below a surface 𝑧 = 𝑓(𝑥, 𝑦) and above a curve 𝑔 𝑥, 𝑦 = 𝑘 in the xy-

plane.

A work line integral gives the net work being done on an object along a path 𝑔 𝑥, 𝑦 = 𝑘 under the effect of a 

vector field F.

A flux line integral gives the net flow through a path 𝑔 𝑥, 𝑦 = 𝑘 under the effect of a vector field F.



Let 𝑧 = 𝑓(𝑥, 𝑦) be a continuous function (surface) in 𝑅3 and C a path on the xy-plane. 

If C is parametrized by 𝐫 𝑡 = 𝑥 𝑡 , 𝑦(𝑡)  for 𝑎 ≤ 𝑡 ≤ 𝑏, then the scalar line integral of 𝑓 along C is 

given by

න
𝐶

𝑓 𝑥, 𝑦  𝑑𝑠 ,

where 𝑑𝑠 = 𝐫′ 𝑡  𝑑𝑡. 

Thus, the integral is in variable 𝑡 and can be written

න
𝑎

𝑏

𝑓 𝑥 𝑡 , 𝑦 𝑡 𝐫′ 𝑡  𝑑𝑡.

The value of a scalar line integral is the area of a “sheet” above the path C to the surface 𝑓.



Example 1: Find ׬𝐶
𝑥2𝑦 𝑑𝑠, where C is the straight line from (2,1) to (6,4).

Solution: Parametrize the path C first, noting that 6 − 2, 4 − 1 = 4, 3  is the direction vector of the line segment:

𝐫 𝑡 = 2,1 + 𝑡 4,3 = 2 + 4𝑡, 1 + 3𝑡 , for 0 ≤ 𝑡 ≤ 1.

Thus, we have 𝐫′ 𝑡 = 4, 3  and 𝐫′ 𝑡 = 42 + 32 = 25 = 5, so that 𝑑𝑠 = 𝐫′ 𝑡  𝑑𝑡 = 5 𝑑𝑡.  

From 𝐫 𝑡 , we obtain 𝑥 𝑡 = 2 + 4𝑡 and 𝑦 𝑡 = 1 + 3𝑡. These are substituted into the integrand, and simplified: 

න
𝐶

𝑥2𝑦 𝑑𝑠 = න
𝐶

2 + 4𝑡 2(1 + 3𝑡) 𝑑𝑠 = න
𝐶

4 12𝑡3 + 16𝑡2 + 7𝑡 + 1  5 𝑑𝑡

= 20 න
0

1

12𝑡3 + 16𝑡2 + 7𝑡 + 1  𝑑𝑡 = 20 3𝑡4 +
16

3
𝑡3 +

7

2
𝑡2 + 𝑡

0

1

=
770

3
 .



Example 2: Find ׬𝐶
𝑥 𝑑𝑠, where C is the arc of the parabola 𝑦 = 𝑥2 from (−1,1) to (3,9).

Solution: Path C is parametrized:

𝐫 𝑡 = 𝑡, 𝑡2 ,    for    −1 ≤ 𝑡 ≤ 3.

We have 𝐫′ 𝑡 = 1, 2𝑡  and 𝐫′ 𝑡 = 12 + (2𝑡)2= 1 + 4𝑡2, so that 𝑑𝑠 = 1 + 4𝑡2 𝑑𝑡. The integrand is now 

written in terms of 𝑡 and evaluated using u-du substitution:

න
𝐶

𝑥 𝑑𝑠 = න
−1

3

𝑡 1 + 4𝑡2 𝑑𝑡

=
1

12
1 + 4𝑡2 Τ3 2

−1

3

=
1

12
1 + 4(3)2 Τ3 2 −

1

12
1 + 4 −1 2 Τ3 2

=
1

12
(37 Τ3 2 − 5 Τ3 2) ≈ 17.82.



In some cases, a numerical method needs to be used to evaluate the integral.

Example 3: Find ׬𝐶
𝑥3𝑦2 𝑑𝑠, where C is the curve 𝑦 = 𝑥3 from (1,1) to (2,8).

Solution: Path C is parametrized as:

𝐫 𝑡 = 𝑡, 𝑡3 ,  for  1 ≤ 𝑡 ≤ 2.

We have 𝐫′ 𝑡 = 1,3𝑡2  and 𝐫′ 𝑡 = 12 + (3𝑡2)2= 1 + 9𝑡4. The integrand is now written in terms of 𝑡:

𝑥3𝑦2 𝑑𝑠 = 𝑡 3 𝑡3 2 1 + 9𝑡4 𝑑𝑡 = 𝑡9 1 + 9𝑡4 𝑑𝑡.

The integral is

න
𝐶

𝑥3𝑦2 𝑑𝑠 = න
1

2

𝑡9 1 + 9𝑡4 𝑑𝑡 .

Using numerical methods, this integral evaluates to approximately 1029.1 units.



Let 𝐅 𝑥, 𝑦, 𝑧 = 𝑀 𝑥, 𝑦, 𝑧 , 𝑁 𝑥, 𝑦, 𝑧 , 𝑃(𝑥, 𝑦, 𝑧)  be a vector field in 𝑅3, and let C be a directed path in 𝑅3 parametrized 

by 𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧(𝑡)  for 𝑎 ≤ 𝑡 ≤ 𝑏. 

The word “directed” means that the path must be traversed in a specified direction. 

The vector (work) line integral of F along C is given by 

න
𝐶

𝐅 ∙ 𝑑𝐫 ,

where 𝑑𝐫 = 𝐫′ 𝑡 =
𝑑

𝑑𝑡
𝐫(𝑡). 

A line integral of this form is also defined in 𝑅2, where the vector field is 𝐅 𝑥, 𝑦 = 𝑀 𝑥, 𝑦 , 𝑁 𝑥, 𝑦  and C is 

parametrized by 𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 .



A common “descriptive” way to describe this line integral is

න
𝐶

𝐅 ⋅ 𝐓 𝑑𝑠.

As the particle moves along the path C, the vector field either “helps” or “hinders” this particle. 

In order to remove the particle’s speed from consideration, the path is segmented into equally-sized sub-

segments using the 𝑑𝑠 segmentation, where 𝑑𝑠 = 𝐫′ 𝑡  𝑑𝑡. 

This forces the particle to maintain a constant speed, and without loss of generality, we can use the unit tangent 

vector, 𝐓 𝑡 =
𝐫′ 𝑡

𝐫′ 𝑡
, to represent the constant speed. 



Thus, at any position along the path, one of three situations occurs:

• The vector F at this position points in the same direction as T. That is, F and T are acute, and 𝐅 ⋅ 𝐓 > 0. 

Vector F is “helping” the particle as though it was pushing it from behind.

• The vector F at this position points in an opposing direction as T. That is, F and T are obtuse, and 𝐅 ⋅ 𝐓 < 0. 

Vector F is hindering the particle’s forward movement, as though it were pushing from the front.

• The vector F at this position is orthogonal direction as T, and 𝐅 ⋅ 𝐓 = 0. Vector F has no effect on the particle’s 

forward movement.



The integral then sums (in the sense of integration) all of the dot products along the path. 

If the result of the line integral is positive, then the vector field F had a net positive effect on the particle’s movement. 

If the line integral is negative, then the vector field F had a net negative effect on the particle’s movement. 

If the line integral is 0, then the vector field F had a net-zero effect on the particle’s movement.

We take the descriptive form of the line integral and make substitutions:

න
𝐶

𝐅 ⋅ 𝐓 𝑑𝑠 = න
𝐶

𝐅 ⋅
𝐫′ 𝑡

𝐫′ 𝑡
𝐫′ 𝑡  𝑑𝑡 .

Note that 𝐫′ 𝑡  cancels, so we have

න
𝐶

𝐅 ∙ 𝐫′ 𝑡  𝑑𝑡 = න
𝑎

𝑏

𝐅 ∙ 𝑑𝐫 ,

where 𝑑𝐫 is shorthand for 𝐫′ 𝑡  𝑑𝑡, and 𝑎 ≤ 𝑡 ≤ 𝑏. 



Note: the integral below is a common alternative way to express a line integral:

න
𝐶

𝑀 𝑥, 𝑦, 𝑧  𝑑𝑥 + 𝑁 𝑥, 𝑦, 𝑧  𝑑𝑦 + 𝑃 𝑥, 𝑦, 𝑧  𝑑𝑧 .

In this form, the expression 𝐅 ∙ 𝑑𝐫 has been expanded, where 𝑑𝐫 is denoted as 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 . It’s important to 

remember that this is equivalent to ׬𝐶
𝐅 ∙ 𝑑𝐫 and is a single integral in variable 𝑡.

The integrals 

න
𝐶

𝐅 ⋅ 𝐓 𝑑𝑠 ,  න
𝐶

𝐅 ∙ 𝑑𝐫 & න
𝐶

𝑀 𝑥, 𝑦, 𝑧  𝑑𝑥 + 𝑁 𝑥, 𝑦, 𝑧  𝑑𝑦 + 𝑃 𝑥, 𝑦, 𝑧  𝑑𝑧

are all equivalent. These line integrals are used to show the work done by a vector field on a particle. If the path is a 

loop, the movement of a particle along the loop is called circulation.



The usual process to determine a line integral is the following:

1) Parameterize the path C in variable 𝑡. This will give 𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧(𝑡) . It will also give the 

bounds of integration a and b.

2)  Find 𝐫′ 𝑡 =
𝑑

𝑑𝑡
𝐫(𝑡), which will give 𝑥′ 𝑡 , 𝑦′ 𝑡 , 𝑧′(𝑡) .

3)  Substitute 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) (from Step 1) into 𝐅 𝑥, 𝑦, 𝑧 . This will give F in terms of 𝑡.

4)  Find 𝐅 ∙ 𝑑𝐫, which will be a function in terms of 𝑡.

5)  Integrate the result from Step 4 with respect to 𝑡 and evaluate at the bounds a and b.



Example 4: Find ׬𝐶
𝐅 ∙ 𝑑𝐫, where 𝐅 𝑥, 𝑦 = −𝑦, 𝑥  and C is the line segment from 𝑃0 = (4,0) to 𝑃1 = (0,4).

Solution:  A sketch of the path C (in bold-black, with its direction shown by an arrow) with the vectors of F show that 

the vector field generally points in the same direction as the direction of movement along C. Thus, we expect that the 

line integral will be positive.

To find ׬𝐶
𝐅 ∙ 𝑑𝐫, follow the steps listed previously.

1) Parameterize the path C in variable 𝑡:

𝐫 𝑡 = 4,0 + 𝑡 −4,4 = 4 − 4𝑡, 4𝑡 , 0 ≤ 𝑡 ≤ 1.

2)  Find 𝐫′ 𝑡 =
𝑑

𝑑𝑡
𝐫(𝑡):

𝑑

𝑑𝑡
𝐫 𝑡 =

𝑑

𝑑𝑡
4 − 4𝑡, 4𝑡 = −4,4 .



3)  Substitute 𝑥 𝑡 = 4 − 4𝑡 and 𝑦 𝑡 = 4𝑡 (from Step 1) into 𝐅 𝑥, 𝑦 = −𝑦, 𝑥 :

𝐅 𝑥 𝑡 , 𝑦 𝑡 = −4𝑡, 4 − 4𝑡 .

4)  Find 𝐅 ∙ 𝑑𝐫:

𝐅 ∙ 𝑑𝐫 = −4𝑡, 4 − 4𝑡 ⋅ −4,4

= −4𝑡 −4 + 4 − 4𝑡 4 = 16.

5)  Integrate the result from Step 4 with respect to 𝑡:

න
𝐶

𝐅 ∙ 𝑑𝐫 = න
0

1

16 𝑑𝑡 = 16𝑡 0
1 = 16.

The positive quantity of the line integral suggests that particle is “helped” by the vector field as it moves along the path 

C.



Example 5: Find ׬𝐶
𝐅 ∙ 𝑑𝐫, where 𝐅 𝑥, 𝑦, 𝑧 = 𝑥, 𝑥𝑦, 𝑦 + 𝑧2  and C is the line segment from 𝑃0 = (1,2, −4) to 𝑃1 =

(3,5,1).

Solution: The line segment C is parameterized as 

𝐫 𝑡 = 1 + 2𝑡, 2 + 3𝑡, −4 + 5𝑡 ,  0 ≤ 𝑡 ≤ 1.

Now, find 𝐫′ 𝑡 =
𝑑

𝑑𝑡
𝐫(𝑡): 

𝑑

𝑑𝑡
𝐫 𝑡 =

𝑑

𝑑𝑡
1 + 2𝑡, 2 + 3𝑡, −4 + 5𝑡 = 2,3,5 .

Substitute 𝑥 𝑡 = 1 + 2𝑡, 𝑦 𝑡 = 2 + 3𝑡 and 𝑧 𝑡 = −4 + 5𝑡 into 𝐅 𝑥, 𝑦, 𝑧 :

𝐅 𝑥, 𝑦, 𝑧 = 𝑥, 𝑥𝑦, 𝑦 + 𝑧2

𝐅 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) = 1 + 2𝑡, 1 + 2𝑡 (2 + 3𝑡), (2 + 3𝑡) + (−4 + 5𝑡)2 .



Simplified, we have

𝐅 𝑡 = 𝐅 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) = 1 + 2𝑡, 6𝑡2 + 7𝑡 + 2, 25𝑡2 − 37𝑡 + 18 .

Find 𝐅 ∙ 𝑑𝐫:

𝐅 ∙ 𝑑𝐫 = 1 + 2𝑡, 6𝑡2 + 7𝑡 + 2, 25𝑡2 − 37𝑡 + 18 ⋅ 2,3,5

= 2 1 + 2𝑡 + 3 6𝑡2 + 7𝑡 + 2 + 5(25𝑡2 − 37𝑡 + 18)

= 143𝑡2 − 160𝑡 + 98.

Now, integrate with respect to 𝑡:

න
0

1

143𝑡2 − 160𝑡 + 98  𝑑𝑡 =
143

3
𝑡3 − 80𝑡2 + 98𝑡

0

1

=
143

3
− 80 + 98 =

197

3
 .

Thus, ׬𝐶
𝐅 ∙ 𝑑𝐫 =

197

3
, a positive quantity, indicating that the vector field F “helped” the particle as it moved from 

𝑃0 = (1,2, −4) to 𝑃1 = (3,5,1).



Example 6: Evaluate ׬𝐶
𝑥𝑦 𝑑𝑥 + 𝑥2 𝑑𝑦, where C is the arc of 

the parabola 𝑦 = 𝑥2 from (0,0) to (2,4), followed by a straight 

line from (2,4) back to (0,0).

Solution: From the integral form, we see that 𝐅 𝑥, 𝑦 =
𝑥𝑦, 𝑥2 . 

The path C is composed of two smaller paths. 

Let 𝐶1 be the parabolic arc, and 𝐶2 be the line. 

Thus, the parametrizations are

𝐶1:  𝐫1 𝑡 = 𝑡, 𝑡2 , 0 ≤ 𝑡 ≤ 2,

𝐶2:  𝐫2 𝑡 = 2 − 2𝑡, 4 − 4𝑡 , 0 ≤ 𝑡 ≤ 1.

In such cases, the entire path C is the 

union of its sub-paths, so that 

න
𝐶

𝐅 ∙ 𝑑𝐫 = න
𝐶1∪𝐶2

𝐅 ∙ 𝑑𝐫

= න
𝐶1

𝐅 ∙ 𝑑𝐫1 + න
𝐶2

𝐅 ∙ 𝑑𝐫2  .



From the last slide, 𝐅 𝑥, 𝑦 = 𝑥𝑦, 𝑥2  and the 

paths are

𝐶1:  𝐫1 𝑡 = 𝑡, 𝑡2 , 0 ≤ 𝑡 ≤ 2,

𝐶2:  𝐫2 𝑡 = 2 − 2𝑡, 4 − 4𝑡 , 0 ≤ 𝑡 ≤ 1.

For the parabolic arc, we have 𝑑𝐫1 = 1,2𝑡  

and 𝐅 𝑡 = 𝑡3, 𝑡2 . Thus,

න
𝐶1

𝐅 ∙ 𝑑𝐫1 = න
𝐶1

𝑡3, 𝑡2 ∙ 1,2𝑡  𝑑𝑡

= න
0

2

3𝑡3 𝑑𝑡

=
3

4
𝑡4

0

2

= 12 .

For the line, 𝑑𝐫2 = −2, −4  and 𝐅 𝑡 = ۃ

ۄ
8𝑡2 − 16𝑡 + 8,

4𝑡2 − 8𝑡 + 4 . Thus,

න
𝐶2

𝐅 ∙ 𝑑𝐫2 = න
𝐶2

8𝑡2 − 16𝑡 + 8, 4𝑡2 − 8𝑡 + 4 ∙ −2, −4  𝑑𝑡

= න
0

1

−32𝑡2 + 64𝑡 − 32  𝑑𝑡

= −
32

3
𝑡3 + 32𝑡2 − 32𝑡

0

1

= −
32

3
 .

Therefore, ׬𝐶
𝑥𝑦 𝑑𝑥 + 𝑥2 𝑑𝑦 = 12 + −

32

3
=

4

3
.

(There is a faster way…)
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