Equations of Lines & Planes

Scott Surgent

Lines in R^3

Given a point $P_0 = (x_0, y_0, z_0)$ and a direction vector $\mathbf{v}_1 = \langle a, b, c \rangle$ in \mathbb{R}^3 , a line *L* that passes through P_0 and is parallel to **v** is written parametrically as a function of *t*:

$$x(t) = x_0 + at$$
, $y(t) = y_0 + bt$, $z(t) = z_0 + ct$

Using vector notation, the same line is written

$$\langle x, y, z \rangle = \mathbf{v}_0 + t\mathbf{v}_1 = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle = \langle x_0 + at, y_0 + bt, z_0 + ct \rangle,$$

where \mathbf{v}_0 is the vector whose head is located at $P_0 = (x_0, y_0, z_0)$.

Example 1: Find the parametric equation of a line passing through $P_0 = (2, -1, 3)$ and parallel to the vector $\mathbf{v}_1 = \langle 5, 8, -4 \rangle$.

Solution: The line is represented parametrically by

$$x(t) = 2 + 5t$$
, $y(t) = -1 + 8t$, $z(t) = 3 - 4t$,

or in vector notation as

$$\langle x, y, z \rangle = \langle 2, -1, 3 \rangle + t \langle 5, 8, -4 \rangle = \langle 2 + 5t, -1 + 8t, 3 - 4t \rangle.$$

Note that when t = 0, we obtain the vector (2, -1, 3). If the foot of this vector is placed at the origin, then its head is the ordered triple $P_0 = (2, -1, 3)$

A line segment from a point $P_0 = (x_0, y_0, z_0)$ to a point $P_1 = (x_1, y_1, z_1)$ over $a \le t \le b$ has the form

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + \frac{t-a}{b-a} \langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle,$$

Note that $\langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle$ is the direction vector of the line.

Example 2: Find the parametric equation of the line segment from $P_0 = (4, 2, -1)$ to $P_1 = (7, -3, -2)$.

Solution: The direction vector \mathbf{v}_1 is found by subtracting P_0 from P_1 :

$$\mathbf{v}_1 = P_1 - P_0 = \langle 7 - 4, -3 - 2, -2 - (-1) \rangle = \langle 3, -5, -1 \rangle.$$

Thus, the line can be written

$$\langle x, y, z \rangle = \langle 4, 2, -1 \rangle + t \langle 3, -5, -1 \rangle = \langle 4 + 3t, 2 - 5t, -1 - t \rangle, \quad \text{for } 0 \le t \le 1.$$

The bounds are such that t = 0 gives $P_0 = (4, 2, -1)$ and t = 1 gives $P_1 = (7, -3, -2)$. Since there is a direction implied by increasing *t*, this is called a *directed line segment*.

When a line segment between two points is constructed in this manner, the bounds on t are always $0 \le t \le 1$.

Example 3: Find the parametric equation of the line segment connecting $P_0 = (4, 2, -1)$ and $P_1 = (7, -3, -2)$ such that t = 0 gives P_0 and that t = 5 gives P_1 .

Solution: The difference in *t*-values is b - a = 5 - 0 = 5. Thus, the line segment is

$$\langle x, y, z \rangle = \langle 4, 2, -1 \rangle + \frac{t}{5} \langle 3, -5, -1 \rangle$$
$$= \langle 4, 2, -1 \rangle + t \left\langle \frac{3}{5}, -1, -\frac{1}{5} \right\rangle$$
$$4 + \frac{3}{5} t - 2 - t - 1 - \frac{1}{5} t \right\rangle \quad \text{for } 0 \le t \le t$$

$$= \left(4 + \frac{5}{5}t, 2 - t, -1 - \frac{1}{5}t\right), \quad \text{for } 0 \le t \le 5.$$

Note that t = 0 gives P_0 and that t = 5 gives P_1 .

Example 4: Let L_1 : $\langle x, y, z \rangle = \langle 1, 2, 5 \rangle + t \langle 2, 4, -3 \rangle$ and L_2 : $\langle x, y, z \rangle = \langle 6, 1, -2 \rangle + s \langle 4, 8, -6 \rangle$ be two lines defined parametrically. (a) Are lines L_1 and L_2 parallel? (b) Are lines L_1 and L_2 the same line?

Solution:

(a) The direction vector for line L_1 is $\mathbf{v}_1 = \langle 2, 4, -3 \rangle$ and the direction vector for line L_2 is $\mathbf{v}_2 = \langle 4, 8, -6 \rangle$. Since $\mathbf{v}_2 = 2\mathbf{v}_1$ (or equivalently, $\mathbf{v}_1 = \frac{1}{2}\mathbf{v}_2$), the two vectors are parallel. Thus, so are the lines.

(b) Choose a point from one line and show that the other line passes through it. In this example, choose point $P_0 = (1,2,5)$ from line L_1 . Does L_2 pass through $P_0 = (1,2,5)$? We substitute the coordinates in P_0 for x, y and z, and attempt to solve for a unique value of s that would indicate line L_2 passes through a point in line L_1 :

$$1 = 6 + 4s$$
, $2 = 1 + 8s$, $5 = -2 - 6s$.

From the first equation, we get s = -5/4, but from the second equation, we get s = 1/8. Since *s* is not unique, we conclude it is impossible that L_2 passes through $P_0 = (1,2,5)$. Thus, lines L_1 and L_2 represent two different parallel lines.

Example 5: Find the point of intersection of lines L_1 : $\langle x, y, z \rangle = \langle 1, 2, -1 \rangle + t \langle 2, -3, 4 \rangle$ and L_2 : $\langle x, y, z \rangle = \langle 1, 8, 9 \rangle + s \langle 4, -12, -2 \rangle$.

Solution: The direction vectors are $\mathbf{v}_1 = \langle 2, -3, 4 \rangle$ and $\mathbf{v}_2 = \langle 4, -12, -2 \rangle$. Since they are not scalar multiples of one another, the two lines are not parallel. To see if they intersect, we set the equations for *x* equal to one another, and for *y*, and for *z*:

$$x: 1 + 2t = 1 + 4s$$

$$y: 2 - 3t = 8 - 12s$$

$$z: -1 + 4t = 9 - 2s.$$

Simplifying, we have a system of two variables in three equations:

$$2t - 4s = 0$$

 $-3t + 12s = 6$
 $4t + 2s = 10.$

One of two things happens: either we find a solution in s and t, in which case there is an intersection point, or we do not find a solution in s and t, in which case there is no intersection point. From the first two equations, we solve a system:

$$\begin{array}{ccc} 2t - 4s = 0 \\ -3t + 12s = 6 \end{array} \xrightarrow{\left(\begin{array}{c} \text{Multiply} \\ \text{top row by 3} \end{array}\right)} & 3(2t - 4s) = 0 \\ -3t + 12s = 6 \end{array} \xrightarrow{\left(\begin{array}{c} \text{Distribute} \\ \text{then add} \end{array}\right)} & 6t - 12s = 0 \\ -3t + 12s = 6 \end{array} \xrightarrow{\left(\begin{array}{c} \text{Distribute} \\ \text{then add} \end{array}\right)} & 3t = 6. \end{array}$$

Thus, we have t = 2, and back-substituting, we have s = 1. Does this solve the third equation? We substitute and simplify:

$$4(2) + 2(1) = 8 + 2 = 10.$$

We get a true statement. We were able to show that when t = 2, we generate the point (5, -4, 7) on line L_1 , and when s = 1, we generate the same point (5, -4, 7) on line L_2 . Thus, the two lines intersect at this point.

Planes

Given a point $P_0 = (x_0, y_0, z_0)$ and a vector $\mathbf{n} = \langle a, b, c \rangle$, a **plane** that passes through P_0 and is normal (orthogonal) to **n** has the equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0,$$

which simplifies to ax + by + cz = d, where $d = ax_0 + by_0 + cz_0$.

Example 6: State a vector that is normal to the plane 2x - 4y + 3z = 12.

Solution: There are infinitely-many possible vectors. One is $\langle 2, -4, 3 \rangle$, which is found by reading the coefficients of *x*, *y* and *z*. Any non-zero multiple of $\langle 2, -4, 3 \rangle$ is also a vector normal to the plane.

Example 7: Find the equation of the plane passing through $P_0 = (-3,9,1)$ and normal to $\mathbf{n} = \langle 7,3,-5 \rangle$.

Solution: The plane has the equation

$$7(x - (-3)) + 3(y - 9) - 5(z - 1) = 0.$$

Simplifying, we have

$$7(x + 3) + 3(y - 9) - 5(z - 1) = 0$$

$$7x + 21 + 3y - 27 - 5z + 5 = 0$$

$$7x + 3y - 5z = 1.$$

Example 8: Find the point of intersection of the line $\langle x, y, z \rangle = \langle 4 - t, 2 + 3t, 3 - 5t \rangle$ and the plane 6x + 2y - 3z = 79.

Solution: Substitute the equations for *x*, *y* and *z* into the plane, and solve for *t*:

$$6(4-t) + 2(2+3t) - 3(3-5t) = 79$$

24-6t+4+6t-9+15t = 79
15t = 60
t = 4.

Now substitute t = 4 into the equations for the line:

$$\langle x, y, z \rangle = \langle 4 - (4), 2 + 3(4), 3 - 5(4) \rangle = \langle 0, 14, -17 \rangle.$$

This is a vector, but if referenced from the origin, its head lies at the point (0,14,-17).

Example 9: Find the equation of the plane passing through the points A = (1,3,4), B = (-3,2,6) and C = (1,0,-6).

Solution: From the three points, form two vectors. For example, vectors **AB** and **AC**:

$$AB = \langle -4, -1, 2 \rangle, AC = \langle 0, -3, -10 \rangle$$

Next, find a vector **n** normal to **AB** and **AC** by finding the cross product **AB** \times **AC**:

$$\mathbf{n} = \mathbf{AB} \times \mathbf{AC} = \langle 16, -40, 12 \rangle$$

Any non-zero multiple of **n** will suffice, so we divide through by 4, getting $\mathbf{n} = \langle 4, -10, 3 \rangle$.

Using any one of the three given points, we now find the equation of the plane. We'll use A first, then check our work with B and C. Using A = (1,3,4) and $\mathbf{n} = \langle 4, -10, 3 \rangle$, we have

$$4(x-1) - 10(y-3) + 3(z-4) = 0$$
$$4x - 4 - 10y + 30 + 3z - 12 = 0$$

$$4x - 10y + 3z = -14.$$

Example 10: Find the acute angle formed by the intersection of the planes x + 3y - 2z = 5 and 4x - y + 5z = -2.

Solution: The respective normal vectors of each plane are $\mathbf{n}_1 = \langle 1, 3, -2 \rangle$ and $\mathbf{n}_2 = \langle 4, -1, 5 \rangle$. The angle between these two planes is the same as the angle between the two normal vectors:

$$\theta = \cos^{-1}\left(\frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1||\mathbf{n}_2|}\right) = \cos^{-1}\left(\frac{-9}{\sqrt{14 \cdot 42}}\right) \approx 111.79 \text{ degrees}$$

However, planes always intersect at an acute angle (except in the case where they are orthogonal). The preferred answer is the supplement: $180^{\circ} - 111.79^{\circ} = 68.21^{\circ}$.

Example 11: Find the acute angle formed by line $\mathbf{v} = \langle 1 + 2t, 3 + t, 5 - 8t \rangle$ and plane x + 2y + z = 4.

Solution: The line's direction vector is $\mathbf{v} = \langle 2, 1, -8 \rangle$ and the plane's normal vector is $\mathbf{n} = \langle 1, 2, 1 \rangle$, so the angle between \mathbf{v} and \mathbf{n} is

$$\theta = \cos^{-1}\left(\frac{\mathbf{v}\cdot\mathbf{n}}{|\mathbf{v}||\mathbf{n}|}\right) = \cos^{-1}\left(\frac{-4}{\sqrt{69\cdot6}}\right) \approx 101.34^{\circ}.$$

In this example, the vector **n** is on one side of the plane, and **v** on the opposite side. Since the angle from **n** to the plane is 90°, the remainder, $101.34^\circ - 90^\circ = 11.34^\circ$, is the desired angle.

A Pictorial Guide to Finding the Shortest Distance Between a Point and a Line

of w onto v.

projection, i.e. completing a right triangle.

vector.

Example 12: Find the shortest distance between the line $\langle x, y, z \rangle = \langle 1, 2, -1 \rangle + t \langle 2, -3, 4 \rangle$ and the point Q = (4, 8, 3).

Solution: Choose any point *P* on the line. For example, when t = 0, we have P = (1,2,-1). Then find the vector from *P* to *Q*, which is $\mathbf{w} = \langle 4 - 1, 8 - 2, 3 - (-1) \rangle = \langle 3, 6, 4 \rangle$. Meanwhile, the directional vector of the line is $\mathbf{v} = \langle 2, -3, 4 \rangle$. The projection of \mathbf{w} onto \mathbf{v} is:

$$\operatorname{proj}_{\mathbf{v}} \mathbf{w} = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{4}{29} \mathbf{v} = \left(\frac{8}{29}, -\frac{12}{29}, \frac{16}{29}\right).$$

The normal vector is found by subtracting $proj_v w$ from w:

norm_{**v**}
$$\mathbf{w} = \mathbf{w} - \text{proj}_{\mathbf{v}} \mathbf{w} = \langle 3, 6, 4 \rangle - \left\langle \frac{8}{29}, -\frac{12}{29}, \frac{16}{29} \right\rangle = \left\langle \frac{79}{29}, \frac{186}{29}, \frac{100}{29} \right\rangle.$$

The magnitude of this normal vector is the distance from the point Q to the line:

$$|\operatorname{norm}_{\mathbf{v}} \mathbf{w}| = \sqrt{\left(\frac{79}{29}\right)^2 + \left(\frac{186}{29}\right)^2 + \left(\frac{100}{29}\right)^2} \approx 7.78 \text{ units}$$

A Pictorial Guide to Finding the Shortest Distance Between a Point and a Plane

Example 13: Find the distance between point Q = (1,4,3) and plane x - 3y + 2z = 6.

Solution: Pick any point *P* in the plane by choosing values for two of the variables and solving for the third. If x = 0 and y = 0, we get z = 3, so a point in the plane is P = (0,0,3). The vector **v** from *P* to *Q* is $\mathbf{v} = \langle 1,4,0 \rangle$. The normal vector to the plane is $\mathbf{n} = \langle 1,-3,2 \rangle$. Project **v** onto **n**:

$$\operatorname{proj}_{\mathbf{n}}\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n} = -\frac{11}{14} \langle 1, -3, 2 \rangle.$$

The magnitude of this vector is the distance from Q = (1,4,3) to the plane x - 3y + 2z = 6:

$$|\text{proj}_{\mathbf{n}}\mathbf{v}| = \frac{11}{14}\sqrt{1^2 + (-3)^2 + 2^2} = \frac{11}{14}\sqrt{14} \approx 2.94 \text{ units.}$$