Equations of Lines & Planes

Scott Surgent

Lines in

Given a point $P_0 = (x_0, y_0, z_0)$ and a direction vector $\mathbf{v}_1 = (a, b, c)$ in R^3 , a line L that passes through P_0 and is parallel to **v** is written parametrically as a function of t:

$$
x(t) = x_0 + at
$$
, $y(t) = y_0 + bt$, $z(t) = z_0 + ct$

Using vector notation, the same line is written

$$
\langle x, y, z \rangle = \mathbf{v}_0 + t\mathbf{v}_1
$$

= $\langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$
= $\langle x_0 + at, y_0 + bt, z_0 + ct \rangle$,

where \mathbf{v}_0 is the vector whose head is located at $P_0 = (x_0, y_0, z_0)$.

Example 1: Find the parametric equation of a line passing through $P_0 = (2, -1, 3)$ and parallel to the vector $v_1 = (5, 8, -4)$.

Solution: The line is represented parametrically by

$$
x(t) = 2 + 5t, \qquad y(t) = -1 + 8t, \qquad z(t) = 3 - 4t,
$$

or in vector notation as

$$
\langle x, y, z \rangle = \langle 2, -1, 3 \rangle + t \langle 5, 8, -4 \rangle = \langle 2 + 5t, -1 + 8t, 3 - 4t \rangle.
$$

Note that when $t = 0$, we obtain the vector $\langle 2, -1, 3 \rangle$. If the foot of this vector is placed at the origin, then its head is the ordered triple $P_0 = (2, -1, 3)$

A **line segment** from a point $P_0 = (x_0, y_0, z_0)$ to a point $P_1 = (x_1, y_1, z_1)$ over $a \le t \le b$ has the form

$$
\langle x,y,z \rangle = \langle x_0,y_0,z_0 \rangle + \frac{t-a}{b-a} \langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle,
$$

Note that $\langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle$ is the direction vector of the line.

Example 2: Find the parametric equation of the line segment from $P_0 = (4, 2, -1)$ to $P_1 =$ $(7, -3, -2)$.

Solution: The direction vector v_1 is found by subtracting P_0 from P_1 :

$$
\mathbf{v}_1 = P_1 - P_0 = (7 - 4, -3 - 2, -2 - (-1)) = (3, -5, -1).
$$

Thus, the line can be written

$$
\langle x, y, z \rangle = \langle 4, 2, -1 \rangle + t \langle 3, -5, -1 \rangle = \langle 4 + 3t, 2 - 5t, -1 - t \rangle, \quad \text{for } 0 \le t \le 1.
$$

The bounds are such that $t = 0$ gives $P_0 = (4, 2, -1)$ and $t = 1$ gives $P_1 = (7, -3, -2)$. Since there is a direction implied by increasing t, this is called a *directed line segment*.

When a line segment between two points is constructed in this manner, the bounds on t are always $0 \le t \le 1$.

Example 3: Find the parametric equation of the line segment connecting $P_0 = (4, 2, -1)$ and $P_1 = (7, -3, -2)$ such that $t = 0$ gives P_0 and that $t = 5$ gives P_1 .

Solution: The difference in *t*-values is $b - a = 5 - 0 = 5$. Thus, the line segment is

$$
\langle x, y, z \rangle = \langle 4, 2, -1 \rangle + \frac{t}{5} \langle 3, -5, -1 \rangle
$$

$$
= \langle 4, 2, -1 \rangle + t \left\langle \frac{3}{5}, -1, -\frac{1}{5} \right\rangle
$$

$$
4 + \frac{3}{5}t^2 - t - 1 - \frac{1}{5}t^2 \qquad \text{for } 0 \le t
$$

$$
= \left(4 + \frac{3}{5}t, 2 - t, -1 - \frac{1}{5}t\right), \quad \text{for } 0 \le t \le 5.
$$

Note that $t = 0$ gives P_0 and that $t = 5$ gives P_1 .

Example 4: Let L_1 : $\langle x, y, z \rangle = \langle 1,2,5 \rangle + t \langle 2,4,-3 \rangle$ and L_2 : $\langle x, y, z \rangle = \langle 6,1,-2 \rangle + s \langle 4,8,-6 \rangle$ be two lines defined parametrically. (a) Are lines L_1 and L_2 parallel? (b) Are lines L_1 and L_2 the same line?

Solution:

(a) The direction vector for line L_1 is $\mathbf{v}_1 = \langle 2, 4, -3 \rangle$ and the direction vector for line L_2 is $\mathbf{v}_2 = \langle 4, 8, -6 \rangle$. Since $\mathbf{v}_2 = 2\mathbf{v}_1$ (or equivalently, $\mathbf{v}_1 = \frac{1}{2}$ $\frac{1}{2}$ **v**₂), the two vectors are parallel. Thus, so are the lines.

(b) Choose a point from one line and show that the other line passes through it. In this example, choose point $P_0 = (1,2,5)$ from line L_1 . Does L_2 pass through $P_0 = (1,2,5)$? We substitute the coordinates in P_0 for *x*, *y* and z, and attempt to solve for a unique value of *s* that would indicate line L_2 passes through a point in line L_1 :

$$
1 = 6 + 4s
$$
, $2 = 1 + 8s$, $5 = -2 - 6s$.

From the first equation, we get $s = -5/4$, but from the second equation, we get $s = 1/8$. Since *s* is not unique, we conclude it is impossible that L_2 passes through $P_0 = (1,2,5)$. Thus, lines L_1 and L_2 represent two different parallel lines.

Example 5: Find the point of intersection of lines L_1 : $\langle x, y, z \rangle = \langle 1, 2, -1 \rangle + t \langle 2, -3, 4 \rangle$ and L_2 : $\langle x, y, z \rangle = \langle 1, 8, 9 \rangle + s \langle 4, -12, -2 \rangle$.

Solution: The direction vectors are $v_1 = \langle 2, -3, 4 \rangle$ and $v_2 = \langle 4, -12, -2 \rangle$. Since they are not scalar multiples of one another, the two lines are not parallel. To see if they intersect, we set the equations for *x* equal to one another, and for *y*, and for *z*:

x:
$$
1 + 2t = 1 + 4s
$$

\ny: $2 - 3t = 8 - 12s$
\nz: $-1 + 4t = 9 - 2s$.

Simplifying, we have a system of two variables in three equations:

$$
2t - 4s = 0
$$

$$
-3t + 12s = 6
$$

$$
4t + 2s = 10.
$$

One of two things happens: either we find a solution in s and t , in which case there is an intersection point, or we do not find a solution in s and t , in which case there is no intersection point. From the first two equations, we solve a system:

$$
2t - 4s = 0
$$

\n
$$
-3t + 12s = 6
$$

Thus, we have $t = 2$, and back-substituting, we have $s = 1$. Does this solve the third equation? We substitute and simplify:

$$
4(2) + 2(1) = 8 + 2 = 10.
$$

We get a true statement. We were able to show that when $t = 2$, we generate the point (5, -4,7) on line L_1 , and when $s = 1$, we generate the same point (5, -4,7) on line L_2 . Thus, the two lines intersect at this point.

Planes

Given a point $P_0 = (x_0, y_0, z_0)$ and a vector $\mathbf{n} = \langle a, b, c \rangle$, a **plane** that passes through P_0 and is normal (orthogonal) to **n** has the equation

$$
a(x - x_0) + b(y - y_0) + c(z - z_0) = 0,
$$

which simplifies to $ax + by + cz = d$, where $d = ax_0 + by_0 + cz_0$.

Example 6: State a vector that is normal to the plane $2x - 4y + 3z = 12$.

Solution: There are infinitely-many possible vectors. One is $(2, -4, 3)$, which is found by reading the coefficients of *x*, *y* and *z*. Any non-zero multiple of $(2, -4, 3)$ is also a vector normal to the plane.

Example 7: Find the equation of the plane passing through $P_0 = (-3.9,1)$ and normal to $\mathbf{n} = \langle 7, 3, -5 \rangle$.

Solution: The plane has the equation

$$
7(x-(-3))+3(y-9)-5(z-1)=0.
$$

Simplifying, we have

$$
7(x + 3) + 3(y - 9) - 5(z - 1) = 0
$$

$$
7x + 21 + 3y - 27 - 5z + 5 = 0
$$

$$
7x + 3y - 5z = 1.
$$

Example 8: Find the point of intersection of the line $\langle x, y, z \rangle = \langle 4 - t, 2 + 3t, 3 - 5t \rangle$ and the plane $6x + 2y - 3z = 79$.

Solution: Substitute the equations for *x*, *y* and *z* into the plane, and solve for *t*:

$$
6(4-t) + 2(2+3t) - 3(3-5t) = 79
$$

24 - 6t + 4 + 6t - 9 + 15t = 79
15t = 60
t = 4.

Now substitute $t = 4$ into the equations for the line:

$$
\langle x, y, z \rangle = \langle 4 - (4), 2 + 3(4), 3 - 5(4) \rangle = \langle 0, 14, -17 \rangle.
$$

This is a vector, but if referenced from the origin, its head lies at the point $(0,14, -17)$.

Example 9: Find the equation of the plane passing through the points $A = (1,3,4)$, $B =$ $(-3,2,6)$ and $C = (1,0,-6)$.

Solution: From the three points, form two vectors. For example, vectors **AB** and **AC**:

$$
AB = \langle -4, -1, 2 \rangle
$$
, $AC = \langle 0, -3, -10 \rangle$

Next, find a vector **n** normal to **AB** and **AC** by finding the cross product $AB \times AC$:

$$
\mathbf{n} = \mathbf{AB} \times \mathbf{AC} = (16, -40, 12)
$$

Any non-zero multiple of **n** will suffice, so we divide through by 4, getting $\mathbf{n} = \langle 4, -10, 3 \rangle$.

Using any one of the three given points, we now find the equation of the plane. We'll use A first, then check our work with *B* and *C*. Using $A = (1,3,4)$ and $\mathbf{n} = (4, -10,3)$, we have

$$
4(x - 1) - 10(y - 3) + 3(z - 4) = 0
$$

$$
4x - 4 - 10y + 30 + 3z - 12 = 0
$$

$$
4x - 10y + 3z = -14.
$$

Example 10: Find the acute angle formed by the intersection of the planes $x + 3y$ – $2z = 5$ and $4x - y + 5z = -2$.

Solution: The respective normal vectors of each plane are $n_1 = (1,3, -2)$ and $n_2 =$ $(4, -1.5)$. The angle between these two planes is the same as the angle between the two normal vectors:

$$
\theta = \cos^{-1}\left(\frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1||\mathbf{n}_2|}\right) = \cos^{-1}\left(\frac{-9}{\sqrt{14 \cdot 42}}\right) \approx 111.79 \text{ degrees}
$$

However, planes always intersect at an acute angle (except in the case where they are orthogonal). The preferred answer is the supplement: $180^{\circ} - 111.79^{\circ} = 68.21^{\circ}$.

Example 11: Find the acute angle formed by line $\mathbf{v} = \langle 1 + 2t, 3 + t, 5 - 8t \rangle$ and plane $x +$ $2y + z = 4$.

Solution: The line's direction vector is $v = \langle 2, 1, -8 \rangle$ and the plane's normal vector is $n =$ $(1,2,1)$, so the angle between **v** and **n** is

$$
\theta = \cos^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{n}}{|\mathbf{v}||\mathbf{n}|}\right) = \cos^{-1}\left(\frac{-4}{\sqrt{69 \cdot 6}}\right) \approx 101.34^{\circ}.
$$

In this example, the vector **is on one side of the plane, and** $**v**$ **on the opposite side. Since the** angle from **n** to the plane is 90°, the remainder, $101.34^\circ - 90^\circ = 11.34^\circ$, is the desired angle.

A Pictorial Guide to Finding the Shortest Distance Between a Point and a Line

a right triangle.

vector.

Example 12: Find the shortest distance between the line $\langle x, y, z \rangle = \langle 1, 2, -1 \rangle + t \langle 2, -3, 4 \rangle$ and the point $Q = (4,8,3).$

Solution: Choose any point P on the line. For example, when $t = 0$, we have $P = (1,2, -1)$. Then find the vector from P to Q, which is $w = (4 - 1.8 - 2.3 - (-1)) = (3.6.4)$. Meanwhile, the directional vector of the line is $v = (2, -3, 4)$. The projection of **w** onto **v** is:

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{w} = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{4}{29} \mathbf{v} = \left\langle \frac{8}{29}, -\frac{12}{29}, \frac{16}{29} \right\rangle.
$$

The normal vector is found by subtracting $proj_v \mathbf{w}$ from \mathbf{w} :

norm_v
$$
\mathbf{w} = \mathbf{w} - \text{proj}_{v} \mathbf{w} = \langle 3, 6, 4 \rangle - \left\langle \frac{8}{29}, -\frac{12}{29}, \frac{16}{29} \right\rangle = \left\langle \frac{79}{29}, \frac{186}{29}, \frac{100}{29} \right\rangle.
$$

The magnitude of this normal vector is the distance from the point Q to the line:

$$
|\text{norm}_{\mathbf{v}} \mathbf{w}| = \sqrt{\left(\frac{79}{29}\right)^2 + \left(\frac{186}{29}\right)^2 + \left(\frac{100}{29}\right)^2} \approx 7.78 \text{ units.}
$$

A Pictorial Guide to Finding the Shortest Distance Between a Point and a Plane

common foot.

Example 13: Find the distance between point $Q = (1,4,3)$ and plane $x - 3y + 2z = 6$.

Solution: Pick any point P in the plane by choosing values for two of the variables and solving for the third. If $x = 0$ and $y = 0$, we get $z = 3$, so a point in the plane is $P = (0,0,3)$. The vector **v** from P to Q is $\mathbf{v} = \langle 1,4,0 \rangle$. The normal vector to the plane is $\mathbf{n} = \langle 1, -3, 2 \rangle$. Project **v** onto **n**:

$$
\text{proj}_{\mathbf{n}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n} = -\frac{11}{14} \langle 1, -3, 2 \rangle.
$$

The magnitude of this vector is the distance from $Q = (1,4,3)$ to the plane $x - 3y + 2z = 6$:

$$
|\text{proj}_{n} \mathbf{v}| = \frac{11}{14} \sqrt{1^2 + (-3)^2 + 2^2} = \frac{11}{14} \sqrt{14} \approx 2.94 \text{ units.}
$$