
Optimization
Scott Surgent



Optimization is the process of determining the highest (maximum) and lowest (minimum) points on a 

graph.

Maximum and minimum points are collectively called extreme points, or extrema. 

Let 𝑧 = 𝑓(𝑥, 𝑦) be a function in 𝑅3, and assume that 𝑓 exists and is continuous over the entire xy-plane. 

That is, its domain is 𝑅2, there being no restrictions on variables x and y.

A critical point (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐), where 𝑧𝑐 = 𝑓 𝑥𝑐 , 𝑦𝑐 , is a point where 𝑓𝑥 𝑥𝑐 , 𝑦𝑐 = 0 or does not exist, and 

where 𝑓𝑦 𝑥𝑐 , 𝑦𝑐 = 0 or does not exist. 

All minimum and maximum points are local (or relative), meaning that the point is the lowest or highest 

point within some open region in 𝑅2 that includes the point. 

If it is the lowest or highest point over the entire domain, then the point is an absolute minimum or 

maximum.



The second derivative test for 𝑅2 is one way to determine if a critical point (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) is a minimum, a 

maximum, or neither. The formula is

𝐷 = 𝑓𝑥𝑥 𝑥𝑐 , 𝑦𝑐 𝑓𝑦𝑦 𝑥𝑐 , 𝑦𝑐 − 𝑓𝑥𝑦 𝑥𝑐 , 𝑦𝑐

2
.

• If 𝐷 > 0 and if 𝑓𝑥𝑥 𝑥𝑐 , 𝑦𝑐 > 0, then the graph of 𝑓 is concave upward, and (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) is a relative 

minimum.

• If 𝐷 > 0 and if 𝑓𝑥𝑥 𝑥𝑐 , 𝑦𝑐 < 0, then the graph of 𝑓 is concave downward, and (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) is a relative 

maximum.

• If 𝐷 < 0, then (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) is not a minimum nor a maximum. It is a saddle point.

• If 𝐷 = 0, then no conclusion about (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) can be inferred. Other methods need to be used to classify 

the critical point.

When 𝐷 > 0, the signs of 𝑓𝑥𝑥 𝑥𝑐 , 𝑦𝑐  and 𝑓𝑦𝑦 𝑥𝑐 , 𝑦𝑐  will be the same. Thus, when 𝐷 > 0, it is sufficient to 

note the sign of one since the sign of the other will be identical.

When there are no restrictions on the domain, this process is called unconstrained optimization.



Example 1: Let 𝑧 = 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 + 6𝑥 − 4𝑦 + 2. Find its critical points and classify these points as 

minima, maxima or saddle.

Solution: Find the first partial derivatives:

𝑓𝑥 𝑥, 𝑦 = 2𝑥 + 6

𝑓𝑦 𝑥, 𝑦 = 2𝑦 − 4.

Note that the derivatives (as well as the function itself) are defined for all x and all y in 𝑅2. Thus, there are no 

possible locations where the derivatives “do not exist”. Then set the partial derivatives to 0, and solve:

2𝑥 + 6 = 0
2𝑦 − 4 = 0

 which gives 
𝑥 = −3
𝑦 = 2.

Thus, we have one critical point, −3,2, 𝑓 −3,2 , where 𝑓 −3,2 = −11. To classify this critical point, we 

use the second derivative test. The second derivatives are found first (recall that 𝑓𝑥𝑦 𝑥, 𝑦 = 𝑓𝑦𝑥(𝑥, 𝑦)):

𝑓𝑥𝑥 𝑥, 𝑦 = 2, 𝑓𝑦𝑦 𝑥, 𝑦 = 2 and 𝑓𝑥𝑦 𝑥, 𝑦 = 0.



By the second derivative test, we have

𝐷 = 𝑓𝑥𝑥 −3,2 𝑓𝑦𝑦 −3,2 − 𝑓𝑥𝑦 −3,2
2

= 2 2 − 02

= 4.

Note that 𝐷 > 0  and that 𝑓𝑥𝑥 > 0 . Therefore,

−3,2, −11  is a local minimum point. 

The graph of 𝑧 = 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 + 6𝑥 − 4𝑦 + 2 

is a paraboloid that opens upward (in the direction of 

positive z). 

Its vertex is −3,2, −11 . 

This point is also the absolute minimum point over the 

entire domain.



Example 2: Find the critical points of 𝑧 = 𝑔 𝑥, 𝑦 = 𝑥4 + 𝑦4, and classify these points as minima, maxima or 

saddle.

Solution: The first partial derivatives are 𝑔𝑥 𝑥, 𝑦 = 4𝑥3 and 𝑔𝑦 𝑥, 𝑦 = 4𝑦3. 

Setting each to 0, we get 𝑥 = 0 and 𝑦 = 0. Note that 𝑧 = 𝑔 0,0 = 0, so that (0,0,0) is the lone critical point.

The second derivatives are 𝑔𝑥𝑥 𝑥, 𝑦 = 12𝑥2 , 𝑔𝑦𝑦 𝑥, 𝑦 = 12𝑦2  and 𝑔𝑥𝑦 𝑥, 𝑦 = 0. Using the second 

derivative test:

𝐷 = 𝑔𝑥𝑥 0,0 𝑔𝑦𝑦 0,0 − 𝑔𝑥𝑦 0,0
2

= 12 0 2 12 0 2 − 0

= 0.

The second derivative test yields no useful information. However, note that the cross sections of this surface 

are 𝑧 = 𝑥4 (when y = 0) and 𝑧 = 𝑦4 (when x = 0). In each case, the point (0,0) is a minimum, so we can infer 

that (0,0,0) is a local minimum point on the surface of 𝑧 = 𝑥4 + 𝑦4. The surface is bowl-shaped, with a 

flattened bottom, where (0,0,0) is its vertex. Viewing its graph suggests that the point is the absolute minimum.



Example 3: Let 𝑧 = 𝑓 𝑥, 𝑦 = 𝑥3 + 𝑦3 − 3𝑥 − 27𝑦 + 7. Find its critical points and classify these points as 

minima, maxima or neither.

Solution: We find the partial derivatives:

𝑓𝑥(𝑥, 𝑦) = 3𝑥2 − 3

𝑓𝑦(𝑥, 𝑦) = 3𝑦2 − 27.

These are set equal to 0 and solved for the variable:

3𝑥2 − 3 = 0
3𝑦2 − 27 = 0

 ,  which simplifies as 
3 𝑥2 − 1 = 0 

3 𝑦2 − 9 = 0.

From the first equation, 𝑥2 − 1 = 0, we get 𝑥 = 1 and 𝑥 = −1. From the second equation, 𝑦2 − 9 = 0, we get 

𝑦 = 3 and 𝑦 = −3. We combine these solutions in all possible ways, and we have four critical points:

1,3, 𝑓 1,3 ,  1, −3, 𝑓 1, −3 ,  −1,3, 𝑓 −1,3 ,  −1, −3, 𝑓 −1, −3 .

The z values are 𝑓 1,3 = −49, 𝑓 1, −3 = 59, 𝑓 −1,3 = −45 and 𝑓 −1, −3 = 63.



To classify these critical points, use the second derivative test. The second derivatives are

𝑓𝑥𝑥 𝑥, 𝑦 = 6𝑥, 𝑓𝑦𝑦(𝑥, 𝑦) = 6𝑦 and 𝑓𝑥𝑦 𝑥, 𝑦 = 0.

Thus, using the formula, we have

𝐷 = 𝑓𝑥𝑥 𝑥, 𝑦 𝑓𝑦𝑦 𝑥, 𝑦 − 𝑓𝑥𝑦 𝑥, 𝑦
2

= 6𝑥 6𝑦 .

• When x = 1 and y = 3, we have 𝐷 = (6)(18), which is a positive number. Note that 𝑓𝑥𝑥(1,3) is also 

positive. Thus, the critical point 1, 3, −49  is a local minimum.

• When x = 1 and y = –3, we have 𝐷 = (6)(−18), which is a negative number. Thus, the critical point

1, −3, 59  is a saddle point.

• When x = –1 and y = 3, we have 𝐷 = (−6)(18), which is a negative number. Thus, the critical point

−1, 3, −45  is a saddle point.

• When x = –1 and y = –3, we have 𝐷 = (−6)(−18), which is a positive number. Note that 𝑓𝑥𝑥(−1, −3) is 

negative. Thus, the critical point −1, −3, 63  is a local maximum.



When finding D, it’s not important to determine its actual 

value. 

It’s more important to determine its sign. 

Thus, calculating (6)(18) is not as important as observing 

that the product of two positive values is positive. 

Furthermore, by leaving the expression as (6)(18) rather 

than simplifying it, we can also quickly see that the value 

6, representing 𝑓𝑥𝑥(1,3), is positive.

The graph of 𝑧 = 𝑓 𝑥, 𝑦 = 𝑥3 + 𝑦3 − 3𝑥 − 27𝑦 + 7 is:



Example 4: Let 𝑧 = 𝑓 𝑥, 𝑦 = 𝑥3 − 𝑦3 − 2𝑥2 + 𝑥𝑦 + 3𝑦. Find its critical points and classify these points as 

minima, maxima or saddle.

Solution: The partial derivatives are

𝑓𝑥(𝑥, 𝑦) = 3𝑥2 − 4𝑥 + 𝑦

𝑓𝑦(𝑥, 𝑦) = −3𝑦2 + 𝑥 + 3.

Setting these to zero, develop a non-linear system:

3𝑥2 − 4𝑥 + 𝑦 = 0

−3𝑦2 + 𝑥 + 3 = 0.

We cannot use the elimination method. Instead, we use substitution. In the first equation, solve for y:

𝑦 = 4𝑥 − 3𝑥2.



This is substituted into the second equation, then simplified:

−3 4𝑥 − 3𝑥2 2 + 𝑥 + 3 = 0

−3 16𝑥2 − 24𝑥3 + 9𝑥4 + 𝑥 + 3 = 0

−27𝑥4 + 72𝑥3 − 48𝑥2 + 𝑥 + 3 = 0.

Using a graphing calculator, we find four roots to this quartic equation. They are

𝑥 ≈ −0.21,  𝑥 ≈ 0.36,  𝑥 ≈ 0.92 and 𝑥 ≈ 1.59.

For each x value above, use the equation 𝑦 = 4𝑥 − 3𝑥2 to find the corresponding y value. The z-values are 

then found by evaluating 𝑓 at each x and y value. There are four critical points:

−0.21, −0.97, −1.89 , 0.364, 1.06, 2.19 , 0.92, 1.14, 2.073  and 1.59, −1.24, −4.82 .



The second derivatives are

𝑓𝑥𝑥(𝑥, 𝑦) = 6𝑥 − 4,  𝑓𝑦𝑦(𝑥, 𝑦) = −6𝑦,  𝑓𝑥𝑦(𝑥, 𝑦) = 1.

Thus, we have

𝐷 = 𝑓𝑥𝑥 𝑥𝑐 , 𝑦𝑐 𝑓𝑦𝑦 𝑥𝑐 , 𝑦𝑐 − 𝑓𝑥𝑦 𝑥𝑐 , 𝑦𝑥

2
= 6𝑥𝑐 − 4 −6𝑦𝑐 − 1 2,

where 𝑥𝑐 and 𝑦𝑐 are the input values of a critical point. Each critical point is evaluated into the second 

derivative test formula. Only x and y are used, z is not:

• At −0.21, −0.97, −1.89 , we get 𝐷 = 6 −0.21 − 4 −6 −0.97 − 1 = −31.48. Since D is negative, 

the point −0.21, −0.97, −1.89  is a saddle point.

• At 0.36, 1.06, 2.19 , we get 𝐷 = 6 0.36 − 4 −6 1.06 − 1 = 10.54. Since D is positive and since 

𝑓𝑥𝑥(0.36, 1.06) is negative (as is 𝑓𝑦𝑦(0.36, 1.06)), the point 0.36, 1.06, 2.19  is a local maximum.

• At 0.92, 1.14, 2.07 , we get 𝐷 = 6 0.92 − 4 −6 1.14 − 1 = −11.37. Since D is negative, the point

0.92, 1.14, 2.07  is a saddle point.

• At 1.59, −1.24, −4.82 , we get 𝐷 = 6 1.59 − 4 −6 −1.24 − 1 = 40.14. Since D is positive and 

since 𝑓𝑥𝑥(1.59, −1.24)  is positive (as is 𝑓𝑦𝑦(1.59, −1.24)), the point 1.59, −1.24, −4.82  is a local 

minimum.





Normally, x and y are chosen independently of one another so that one may “roam” over the entire surface of 𝑓 (within 

any domain restrictions on x and y). Determining minimum or maximum points on 𝑓 under this circumstance is called 

unconstrained optimization.

If x and y are related to one another by an equation, then only one of the variables can be independent. In such a case, 

we may determine a minimum or maximum point on the surface of 𝑓 subject to the constraint placed on x and y. 

This is called constrained optimization. Such constraints are usually written where x and y are combined implicitly, 

𝑔 𝑥, 𝑦 = 𝑐.

Suppose you are hiking on a hill. If there is no restriction on where you may walk, then you are “unconstrained” and 

you may seek the hill’s maximum point. However, if you are constrained to a hiking path, then it is possible to 

determine a maximum point on the hill, but only that part along the hiking path.

(Left) Unconstrained optimization: The maximum point 

of this hill is marked by a black dot, and is roughly 𝑧 =

105.

(Right) Constrained optimization: The highest point on 

the hill, subject to the constraint of staying on path P, is 

marked by a gray dot, and is roughly 𝑧 = 93.



Example 5: Find the minimum or maximum point on the surface of 𝑧 = 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 subject to the 

constraint −3𝑥 + 𝑦 = 2.

Solution: The surface of 𝑓 is a paraboloid with its vertex (0,0,0) at the origin, opening in the positive z 

direction (or “up”). Its unconstrained minimum point is (0,0,0). There is no maximum point on this 

surface.

Now, note that with the constraint 𝑦 = 3𝑥 + 2 in place, x and y are no longer independent variables. Once 

a value for x is chosen, then y is determined. We are now restricted to this “path” on the surface of 𝑓.



To find the minimum or maximum point on this paraboloid subject to the constraint 𝑦 = 3𝑥 + 2, substitute 

the constraint into the function 𝑓 and simplify:

𝑓 𝑥, 3𝑥 + 2 = 𝑥2 + (3𝑥 + 2)2= 10𝑥2 + 12𝑥 + 4.

Differentiating, we have 𝑓′ 𝑥 = 20𝑥 + 12, and to find the critical value of x, we set 𝑓′ 𝑥 = 0:

20𝑥 + 12 = 0 which gives 𝑥 = −
3

5
 .

Observe that 𝑓 𝑥 = 10𝑥2 + 12𝑥 + 4 is a parabola in 𝑅2 that opens upward. Thus, the critical value for x 

will correspond to the minimum point on this parabola. Find y by substitution into the constraint: 

𝑦 = 3 −
3

5
+ 2 =

1

5
 .

Lastly, we find z:

𝑧 = 𝑓 −
3

5
,
1

5
= −

3

5

2

+
1

5

2

=
10

25
=

2

5
 .

The minimum point on the surface 

of 𝑓 is −
3

5
,

1

5
,

2

5
. The minimum 

value of z on the surface of 𝑓 is 

𝑦 = 3𝑥 + 2 is =
2

5
 .



Example 6: Consider the portion of the plane 2𝑥 + 4𝑦 + 5𝑧 = 20 in the first octant. Find the point on the 

plane closest to the origin.

Solution: The point on the plane closest to the origin will lie on a line orthogonal to the plane. Let (𝑥, 𝑦, 𝑧) 

be a point on the plane, so the distance 𝑑 between this point and the origin (0,0,0) is

𝑑(𝑥, 𝑦, 𝑧) = 𝑥 − 0 2 + 𝑦 − 0 2 + 𝑧 − 0 2 = 𝑥2 + 𝑦2 + 𝑧2.

However, note that not all variables are independent—they are constrained to one another by the plane’s 

equation. We can isolate one of the variables in the plane. For example, 𝑧 = 4 −
2

5
𝑥 −

4

5
𝑦. Thus, d can be 

written as a function of x and y only, and the radicand is expanded:

𝑑 𝑥, 𝑦 = 𝑥2 + 𝑦2 + 4 −
2

5
𝑥 −

4

5
𝑦

2

=
29

25
𝑥2 +

41

25
𝑦2 +

16

25
𝑥𝑦 −

16

5
𝑥 −

32

5
𝑦 + 16.



Variables x and y also obey another constraint: both must be non-negative. This will ensure that z is also non-

negative.

Taking partial derivatives and simplifying, we have

𝑑𝑥 =

29
25

𝑥 +
8

25
𝑦 −

8
5

29
25

𝑥2 +
41
25

𝑦2 +
16
25

𝑥𝑦 −
16
5

𝑥 −
32
5

𝑦 + 16

 ,  𝑑𝑦 =

8
25

𝑥 +
41
25

𝑦 −
16
5

29
25

𝑥2 +
41
25

𝑦2 +
16
25

𝑥𝑦 −
16
5

𝑥 −
32
5

𝑦 + 16

 .

When set to 0, the denominators can be ignored. Thus, only the numerators are considered, and we have

29

25
𝑥 +

8

25
𝑦 −

8

5
= 0 and 

8

25
𝑥 +

41

25
𝑦 −

16

5
= 0.

Placing the constants to the right of the equality and multiplying by 25 to clear fractions, we then have a 

simplified system in two variables:

29𝑥 + 8𝑦 = 40

8𝑥 + 41𝑦 = 80.



Using any method (such as elimination) to solve this system, we find that 𝑥 =
8

9
 , 𝑦 =

16

9
 , and 

substituting these into the plane’s equation, we have 𝑧 =
20

9
 . 

Thus, the point
8

9
.

16

9
,

20

9
 is the point on the plane closest to the origin. 
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