Partial Differentiation

Scott Surgent



Given a function z = f(x,y). There are two ‘“convenient” directions in which to
calculate an instantaneous rate of change: the positive x direction, or the positive y
direction.

The instantaneous rate of change of f with respect to x is called the partial derivative of
Z with respect to x, and is written

oz of

o or o, or informally as z, or f,.

Similarly, the instantaneous rate of change of f with respect to y is called the partial
derivative of z with respect to y, and is written

0z of _
— or —, or informally as z,, or f,,.

dy dy



Example 1. Use the contour map below, representing z = f(x,y). Assume that f is
smooth and continuous. Give the sign of f,.(4), f, (4), fx(B), f,(B), fx(C), and £, (C).
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On a contour map representing the surface of a smooth and continuous function f, the
values of the partial derivatives of f with respect to x and with respect to y are O at all
minimum, maximum and saddle points.

If movement in the x or y direction happens to be tangential to the contour at a point, then
the value of the partial derivative of f with respect to the x or y direction is 0. That Is,
tangential movement along a level curve always means no change in z.



Example 2: The contour map below represents the surface of a smooth and continuous
function z = g(x,y). Assume that points B, C, D and G are minimum, maximum or
saddle points. State the sign (positive, negative or zero) of the partial derivative of g
with respect to x and with respect to y, at each of the points A through G.

¥ ) ) _
ag(/l) > 0 and Eg(A) = 0.

\ S |
ﬂu@ N \ ag(B) = 0 and 5‘9(8) = 0. B is a local maximum.
B a0 '51'-5'-—_____
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0 _ 0 _ - :
ag(C) =0 and ayg(C) = (0. C is a saddle point.

9 9 - .
—-9(D) = 0and 59(13) = 0. D is a local minimum.

5

A
15 E lﬂﬂf—’___\\ 0 9
- 5@ 5z 9(F) =0and = g(F) <0.
. (5 3 : | |
QD\ S 59(0) = 0 and 5g(6) = 0. G is a local maximum.




Example 3: Let z = f(x,y) = x?y + 3x3y* + 2x — 4y. Find Z—i and Z—JZ, .

Solution: When finding g—i , treat the y as a constant. If it is in a term by itself, then the whole term is treated
as a constant. If it is connected to x through multiplication, then it is treated as a coefficient. Thus, we have

az 0 0 0 0
3.4 _ _ 2 3.4 _
6x I — (x? y+ 3x°y* + 2x — 4y) = I (x y) + E (Bx°y*) + F (2x) I (4y)

= (2x)y +3Bx*)y*+2(1) -0
= 2xy + 9x2y* + 2.

.. . 0 ..
Similarly, to find 5, we treat x as a constant or a coefficient:

6Z 0 0 d d
Oy 5 — (x%y + 3x3y* + 2x — 4y) = (x y) + (3x 3y) + — (Zx) —— (4y)

=x%(1) +3x3(4y3) + 0 — 4(1)
= x? 4+ 12x3y3 — 4.



Example 4: Let z = x° sin(x“y?). Find z, and z,,.

Solution: For z,, note that x Is present in two factors attached by multiplication. Thus, we
use the Product Rule of differentiation and the Chain Rule:

Z, = x3(cos(x?y3) 2xy3) + 3x? sin(x?y3) = 2x*y3 cos(x?y3) + 3x% sin(x%y3).

For z,, we do not need the Product Rule, treating the x3 as a coefficient of the sine
operator. However, we do need the Chain Rule:

z, = x° cos(x?y3) x*(3y*?) = 3x>y? cos(x?y3).



Higher-Order Partial Derivatives & Clairaut’s Theorem

Suppose z = f(x, y) is given. There are two first partial derivatives, f, = g-ﬁ and f, = a

Each partial derivative is itself a function of two variables. Thus, each has two partial derivatives of its own.
For example, £, (x, y) has two partial derivatives:

of\ _9*f of\ _ 0*f
(fdx = (ax> 9x2 and (fx)y dy (636) Jy ox

Similarly, f,,(x, y) has two partial derivatives:

of\ _ 0*f of\ _ 9f
(fy)y 6y<6y) a_yz and (fy)x 6x(6y) Ox 0y

Usually, second derivatives are noted by using subscripts without parentheses. Thus,

frx = (i) x fyy = (fy)y' fxy = (fx)y and fyx = (fy)x'



Second derivatives such as f,, and f,, are Informally called homogeneous second
derivatives, while f,,, and f,,, are called mixed second derivatives.

Under “typical” circumstances, e.g. the function f being smooth and continuous, and
twice-differentiable over its relevant domain, the mixed second derivatives will be equal:

fxy = fyx (Clairaut’s Theorem).

As one might expect, second derivatives of a smooth and continuous function offer
Insight to the concavity of the function.



Example 5: Given z = f(x,y) = x*y + 3x°y* + 2x — 4y. Find f,, fyy, fxy and fy.
Solution: From a previous example, we found the two first partial derivatives:
fr(x,y) =2xy + 9x*y*+2 and f,(x,y) = x* + 12x3y° — 4.

Thus, we have

0 0 - .
fxx = axfx(xry) = Ox (2xy +9x°y* + 2) = 2y + 18xy
and

0 0
fyy = @fy(x;y) - @(Xz + 12363)/3 —4) = 36x3y2.

Furthermore, we have

0 d - .
fxy =@fx(x,y) =@(2xy+9x y* +2) = 2x + 36x%y
and
0 J 2 34,3 2..3
fyx:afy(x;Y) =a(x + 12x3y3 — 4) = 2x + 36x2y5.
Note that f,., = f)x.



Example 6: Flnd e and L where flx,y) = [73t2 dt.

Solution: Defining functions as integrals is not uncommon. In this case, we can antidifferentiate the integrand,
and evaluate at the limits of integration:

y
fx,y) =j 3t2dt = [t3]y = y3 — x3.
X

Taking partial derivatives, we have,

af o of 0

°J _ — 32 d — 3y72.

% " 3 —° —x%) = —3x an 3y~ 3y ——(° —x°) =3y

Note that the results look similar to the original integrand. Was it necessary to do the antidifferentiation step?
See the next example.



Example 7: Find g-i and Z—f}, where f(x,y) = fxy Vet — 2t + 7 dt.

Solution: Repeating the steps of the previous example leads to what appears to be an impossible step: the
Integrand does not antidifferentiate “conveniently” into common elementary functions. For now, define H(t) to

be the antiderivative of Vt* — 2t + 7. We cannot determine H(t), but we know its derivative is Vt* — 2t + 7.
Thus, we have

fy) = [ V=247 de = HO, = H) - HE).

X

of 0 . —
a—a(H(y)—H(x))— Jxt—2x 47,

Thus,

where aa_x (H(y)) = 0 and where % (H(x)) is the derivative of H(t) with x in place of t. In a similar manner,

o _9

5y = 3y HO) —HE) = y* =2y +7.
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