Double Integrals using
Polar Coordinates

Scott Surgent



Regions that are formed by circles are better described using polar coordinates.

If (r, 8) represents a point in the plane, then r is the distance from the point to the origin, and 8 represents
the angle that a ray from the origin to the point makes with the positive x-axis.

The usual conversion formulas between rectangular (x, y) coordinates to polar (r, 8) coordinates are:
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Circular regions in the xy-plane can be described using polar coordinates wherea <r <bandc <60 < d,

and a, b, c and d are constants.

Such regions are called polar rectangles.



Example 1: Describe the following regions using polar coordinates.

v v ?]

/ \ } ﬁ e
7

-

0<r<e,

T

< < —

0<r<4 0 <r <65, 0_8_3
0<60<2n _Tcp<t
2 = T2



The polar integral area element, also known as the Jacobian.
Let (7, 0) be a point in R? described in polar coordinates.
Extend r slightly, by Ar units.

Allow the angle 6 to increase, by A8 units.

The length of an arc of a circle of radius r subtended
by 6 radians is S = r8. In this case, the subtending angle is A6.

The length of this arc is rA6.

The area of this small region is (rA8)(Ar).

On small scales, use differentials. The Jacobian of the polar integral is  dr d@.




Example 2: Evaluate
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Solution: The region of integration is a quarter circle in the first 0 3 X

quadrant, center at the origin, radius 3.

The bounds of integrationare 0 <r<3and 0 <60 < % Furthermore, we substitute x = rcos 8 and y =
r sin 8, and exchange dy dx with r dr d@:
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The inside integral is evaluated first:
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(Ex. 2 continued) This is integrated with respect to 8, using u-du substitution, with u = sin 8 and du = cos 6
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Example 3: Evaluate
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Solution: The region of integration as suggested by the bounds in the three integrals is shown below
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In polar coordinates, the regionis2 <r <5and0 <6 <.

Replace the integrand x# with (r cos 8)? = r? cos? 8, and the area element dy dx with r dr d@.

The three double integrals in rectangular coordinates are equivalent to one double integral in polar
coordinates, with constant bounds:
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The inside integral with respect to r is evaluated first:
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This expression is next integrated with respect to 6.

To antidifferentiate cos? 8, use the identity cos? 8 = %(1 + cos 20):
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Example 4: Find the volume of the solid bounded by z = 2x% + 2y? and z = 9 — 2x? — 2y~.

Solution: Set the two functions equal and simplify:
2x% 4+ 2y% =9 — 2x?% — 2y*
z=9—2x% — 2y°
4x?% + 4y? =
z = 2x* + 2y°
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region of integration:
9
x? + }-‘2 = "

The region of integration is the disk x? + y? < z, which can be described in polar coordinatesas 0 < r <

and 0 < 6 < 2.

To the right is a sketch of the solid along with the region of integration.
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The integrand is the “top” boundary (z = 9 — 2x? — 2y?) subtracted by the “bottom” boundary (z =
2x2 + 2y?). This i

9 —2x% — 2y% — (2x% + 2y*%) = 9 — 4x* — 4y*
=9 — 4(x? + y?)
=9 — 4r?,

The volume is found by evaluating
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For the inner integral, we have
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Finally, the volume is
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