Double Integrals using Polar Coordinates

Scott Surgent

Regions that are formed by circles are better described using **polar coordinates**.

If (r, θ) represents a point in the plane, then r is the distance from the point to the origin, and θ represents the angle that a ray from the origin to the point makes with the positive *x*-axis.

 (r, v)

The usual conversion formulas between rectangular (x, y) coordinates to polar (r, θ) coordinates are:

$$
(x, y) \text{ to } (r, \theta): \begin{cases} r^2 = x^2 + y^2 \\ \theta = \arctan\left(\frac{y}{x}\right) \end{cases} (r, \theta) \text{ to } (x, y): \begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}
$$

Circular regions in the *xy*-plane can be described using polar coordinates where $a \le r \le b$ and $c \le \theta \le d$, and a, b, c and d are constants.

Such regions are called **polar rectangles**.

Example 1: Describe the following regions using polar coordinates.

The **polar integral area element**, also known as the **Jacobian**.

Let (r, θ) be a point in R^2 described in polar coordinates.

Extend r slightly, by Δr units.

Allow the angle θ to increase, by $\Delta\theta$ units.

The length of an arc of a circle of radius r subtended by θ radians is $S = r\theta$. In this case, the subtending angle is $\Delta\theta$.

The length of this arc is $r\Delta\theta$.

The area of this small region is $(r\Delta\theta)(\Delta r)$.

On small scales, use differentials. The Jacobian of the polar integral is $r dr d\theta$.

Example 2: Evaluate

$$
\int_0^3 \int_0^{\sqrt{9-x^2}} xy \, dy \, dx.
$$

Solution: The region of integration is a quarter circle in the first quadrant, center at the origin, radius 3.

The bounds of integration are $0 \le r \le 3$ and $0 \le \theta \le \frac{\pi}{3}$ 2 . Furthermore, we substitute $x = r \cos \theta$ and $y =$ $r \sin \theta$, and exchange dy dx with $r dr d\theta$:

$$
\int_0^3 \int_0^{\sqrt{9-x^2}} xy \, dy \, dx = \int_0^{\pi/2} \int_0^3 (r \cos \theta)(r \sin \theta) \, r \, dr \, d\theta = \int_0^{\pi/2} \int_0^3 r^3 \cos \theta \sin \theta \, dr \, d\theta.
$$

The inside integral is evaluated first:

$$
\int_0^3 r^3 \cos \theta \sin \theta \, dr = \cos \theta \sin \theta \left[\frac{1}{4} r^4 \right]_0^3 = \frac{81}{4} \cos \theta \sin \theta.
$$

(Ex. 2 continued) This is integrated with respect to θ , using *u-du* substitution, with $u = \sin \theta$ and $du = \cos \theta$:

$$
\frac{81}{4} \int_0^{\pi/2} \cos \theta \sin \theta \, d\theta = \left[\frac{81}{8} \sin^2 \theta\right]_0^{\pi/2}
$$

$$
= \frac{81}{8} [1^2 - 0]
$$

$$
= \frac{81}{8}.
$$

Example 3: Evaluate

$$
\int_{-5}^{-2} \int_0^{\sqrt{25-x^2}} x^2 dy dx + \int_{-2}^2 \int_{\sqrt{4-x^2}}^{\sqrt{25-x^2}} x^2 dy dx + \int_{2}^5 \int_0^{\sqrt{25-x^2}} x^2 dy dx.
$$

Solution: The region of integration as suggested by the bounds in the three integrals is shown below

In polar coordinates, the region is $2 \le r \le 5$ and $0 \le \theta \le \pi$.

Replace the integrand x^2 with $(r \cos \theta)^2 = r^2 \cos^2 \theta$, and the area element dy dx with r dr d θ .

The three double integrals in rectangular coordinates are equivalent to one double integral in polar coordinates, with constant bounds:

$$
\int_0^{\pi} \int_2^5 r^2 \cos^2 \theta \ r \ dr \ d\theta, \qquad \text{which simplifies to} \qquad \int_0^{\pi} \int_2^5 r^3 \cos^2 \theta \ dr \ d\theta.
$$

The inside integral with respect to *r* is evaluated first:

$$
\int_{2}^{5} r^{3} \cos^{2} \theta \, dr = \cos^{2} \theta \left[\frac{1}{4} r^{4} \right]_{2}^{5} = \frac{1}{4} \cos^{2} \theta \left[(5)^{4} - (2)^{4} \right] = \frac{609}{4} \cos^{2} \theta.
$$

This expression is next integrated with respect to θ .

To antidifferentiate $\cos^2 \theta$, use the identity $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$:

$$
\int_0^{\pi} \frac{609}{4} \cos^2 \theta \, d\theta = \frac{609}{4} \int_0^{\pi} \left(\frac{1}{2} (1 + \cos 2\theta) \right) d\theta
$$

$$
= \frac{609}{8} \int_0^{\pi} 1 + \cos 2\theta \, d\theta
$$

$$
= \frac{609}{8} \left[\theta + \frac{1}{2} \sin 2\theta \right]_0^{\pi}
$$

$$
= \frac{609}{8} \left[\left(\pi + \frac{1}{2} \sin 2(\pi) \right) - \left(0 + \frac{1}{2} \sin 2(0) \right) \right]
$$

$$
= \frac{609}{8} \pi.
$$

Example 4: Find the volume of the solid bounded by $z = 2x^2 + 2y^2$ and $z = 9 - 2x^2 - 2y^2$.

Solution: Set the two functions equal and simplify:

The region of integration is the disk $x^2 + y^2 \leq \frac{9}{4}$ 4 , which can be described in polar coordinates as $0 \le r \le \frac{3}{2}$ 2 and $0 \le \theta \le 2\pi$.

To the right is a sketch of the solid along with the region of integration.

The integrand is the "top" boundary $(z = 9 - 2x^2 - 2y^2)$ subtracted by the "bottom" boundary $(z = 1, z = 1)$ $2x^2 + 2y^2$). This is

$$
9 - 2x2 - 2y2 - (2x2 + 2y2) = 9 - 4x2 - 4y2
$$

$$
= 9 - 4(x2 + y2)
$$

$$
= 9 - 4r2.
$$

The volume is found by evaluating

$$
\int_0^{2\pi} \int_0^{3/2} (9 - 4r^2) r \, dr \, d\theta, \qquad \text{or simplified as:} \qquad \int_0^{2\pi} \int_0^{3/2} (9r - 4r^3) \, dr \, d\theta.
$$

For the inner integral, we have

$$
\int_0^{3/2} (9r - 4r^3) dr = \left[\frac{9}{2}r^2 - r^4\right]_0^{3/2}
$$

$$
= \frac{9}{2} \left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^4 - 0
$$

$$
= \frac{243}{16}.
$$

Finally, the volume is

$$
\int_0^{2\pi} \frac{243}{16} \, d\theta = \frac{243}{16} \int_0^{2\pi} d\theta
$$

$$
= \frac{243}{16} (2\pi)
$$

$$
= \frac{243\pi}{8} \text{ units}^3.
$$