Integration in Spherical Coordinates

Scott Surgent

Example 1: Evaluate $\iiint_R \sqrt{x^2 + y^2 + z^2} \, dV$, where *R* is a hemisphere of radius 5, centered at the origin and above the *xy*-plane.

Solution: In rectangular coordinates, the triple integral is

$$\int_{-5}^{5} \int_{-\sqrt{25-x^2}}^{\sqrt{25-x^2}} \int_{0}^{\sqrt{25-x^2-y^2}} \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx.$$

In spherical coordinates, the integrand is rewritten as $\sqrt{x^2 + y^2 + z^2} = \sqrt{\rho^2} = \rho$, then multiplied by the Jacobian $\rho^2 \sin \phi$. This same integral in spherical coordinates is

$$\int_0^{2\pi} \int_0^{\pi/2} \int_0^5 (\rho) \, \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = \int_0^{2\pi} \int_0^{\pi/2} \int_0^5 \rho^3 \sin \phi \, d\rho \, d\phi \, d\theta \, .$$

Because the integrand is held by multiplication and the bounds of integration are constant, the triple integral can be performed as three separate single-variable integrals:

$$\int_0^{2\pi} \int_0^{\pi/2} \int_0^5 \rho^3 \sin\phi \, d\rho \, d\phi \, d\theta = \left(\int_0^{2\pi} d\theta\right) \left(\int_0^{\pi/2} \sin\phi \, d\phi\right) \left(\int_0^5 \rho^3 \, d\rho\right)$$

$$= (2\pi) \left(\left[-\cos\phi \right]_{0}^{\pi/2} \right) \left(\left[\frac{1}{4}\rho^{4} \right]_{0}^{5} \right)$$

$$= 2\pi \left(-\cos\frac{\pi}{2} - (-\cos 0) \right) \left(\frac{1}{4} (5)^4 - 0 \right)$$

$$=2\pi(0+1)\left(\frac{625}{4}\right)$$

$$=\frac{625}{2}\pi$$

Example 41.3: Let Q be a sphere centered at the origin, and R be a cone whose vertex is at the origin and opens in the positive z direction. The solid S bounded inside the cone and the sphere is called a *spherical sector*. Suppose the point (4,5,7) in rectangular coordinates lies on the "lip", where the sphere and the cone intersect. Find the volume of S.

Solution: Determine bounds for ρ , θ and ϕ by sketching the solid and the point on its rim:

The distance from (0,0,0) to (4,5,7) is $\sqrt{4^2 + 5^2 + 7^2} = \sqrt{90} = 3\sqrt{10}$. Since the solid includes the origin, the bounds of ρ are $0 \le \rho \le 3\sqrt{10}$.

The solid includes the positive *z*-axis, so the lower bound for ϕ is 0. The upper bound is found by observing a right triangle with the adjacent leg on the *z*-axis, and the hypotenuse corresponding to a line from the origin to the point (4,5,7). From this, we see

that for an upper bound, we have $\phi = \arccos\left(\frac{7}{3\sqrt{10}}\right)$.

The solid encircles the *z*-axis. The bounds of θ are $0 \le \theta \le 2\pi$.

The volume integral in spherical coordinates is

$$\int_0^{2\pi} \int_0^{\arccos\left(\frac{7}{3\sqrt{10}}\right)} \int_0^{3\sqrt{10}} \rho^2 \sin\phi \ d\rho \ d\phi \ d\theta$$

The integrand is held by multiplication and the bounds of integration are constant, so the triple integral can be performed as three separate single-variable integrals:

$$\int_{0}^{2\pi} \int_{0}^{\arccos\left(\frac{7}{3\sqrt{10}}\right)} \int_{0}^{3\sqrt{10}} \rho^{2} \sin\phi \, d\rho \, d\phi \, d\theta = \left(\int_{0}^{2\pi} d\theta\right) \left(\int_{0}^{\arccos\left(\frac{7}{3\sqrt{10}}\right)} \sin\phi \, d\phi\right) \left(\int_{0}^{3\sqrt{10}} \rho^{2} \, d\rho\right)$$

$$= (2\pi) \left(\left[-\cos\phi \right]_0^{\arccos\left(\frac{7}{3\sqrt{10}}\right)} \right) \left(\left[\frac{1}{3}\rho^3 \right]_0^{3\sqrt{10}} \right)$$

$$= 2\pi \left(-\cos\left(\arccos\left(\frac{7}{3\sqrt{10}}\right)\right) - (-\cos 0) \right) \left(\frac{1}{3} \left(3\sqrt{10}\right)^3\right)$$

$$=2\pi \left(1 - \frac{7}{3\sqrt{10}}\right) \left(9(10)^{3/2}\right)$$

$$= 18\pi (10)^{3/2} \left(1 - \frac{7}{3\sqrt{10}}\right) \approx 468.76$$
 cubic units

In this example, the bounds are not all constant:

Example 3: Use spherical coordinates to find the volume contained within the cone $z = \sqrt{x^2 + y^2}$ and below the plane z = 6.

Solution: First, observe that the solid is not a spherical sector as in the previous example. The value of ρ will vary as a function of ϕ .

The "sweep" angle θ encompasses a full counter-clockwise rotation around the *xy*-plane from the positive *x*-axis back to the positive *x*-axis, so that $0 \le \theta \le 2\pi$.

The "lean" angle ϕ varies from 0 (the positive *z*-axis) to $\frac{\pi}{4}$ (the side of the cone, which is 45 degrees from both the positive *x*-axis and the positive *y*-axis).

For the plane z = 6, substitute $z = \rho \cos \phi$, getting $\rho \cos \phi = 6$.

Solving for ρ gives $\rho = 6/\cos \phi = 6 \sec \phi$. Since the object is a solid and includes the origin, the lower bound for ρ is 0, while the upper bound is the plane, so that the bounds for ρ are $0 \le \rho \le 6 \sec \phi$. Thus, the volume integral is

$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{6 \sec \phi} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta.$$

The inner-most integral is integrated with respect to ρ :

 $\int_{0}^{6 \sec \phi} \rho^{2} \sin \phi \, d\rho = \sin \phi \left[\frac{\rho^{3}}{3} \right]_{0}^{0 \sec \psi}$

This is now integrated with respect to ϕ .

Note that $72 \sin \phi \cos^{-3} \phi$ can be antidifferentiated by a *u*-*du* substitution, where $u = \cos \phi$ so that $du = -\sin \phi \ d\phi$. This results in a power-rule form, $\int (-72u^{-3}) \ du = 36u^{-2}$:

$$= \sin \phi \left(\frac{216 \sec^3 \phi}{3}\right) \qquad \int_0^{\pi/4} 72 \sin \phi \cos^{-3} \phi \ d\phi = [36 \cos^{-2} \phi]_0^{\pi/4}$$

= 72 \sin \phi \cos^{-3} \phi.
= 36 \left(\frac{\sqrt{2}}{2}\right)^{-2} - (36(1)^{-2})
= 36(2) - 36
= 36.
Lastly, we integrate with respect to \theta:
= 36.