Vector Fields & Gradient Fields

Scott Surgent

A **vector field** is a function **F** that assigns to each ordered pair (x, y) in R^2 a vector of the form $\langle M(x, y), N(x, y) \rangle$. We write

$$
\mathbf{F}(x,y)=\langle M(x,y),N(x,y)\rangle.
$$

This can be extended into higher dimensions. For example. In R^3 , we would write

 $\mathbf{F}(x, y, z) = \langle M(x, y, z), N(x, y, z), P(x, y, z) \rangle.$

Example 1: Sketch $F(x, y) = \langle x, y \rangle$.

Solution: Using an input-output table, we can show some of the vectors in the vector field **F**:

The vector $\langle x, y \rangle$ is drawn so that its foot is at the point described by the ordered pair (x, y) .

In this example, the vectors point radially (along straight lines) away from the origin.

Example 2: Sketch $F(x, y) = \langle y, -x \rangle$.

Solution: An input-output table shows some of the vectors, followed by an image of the vector field.

The vectors suggest a clockwise rotation around the origin.

Example 3: Sketch $F(x, y) = \langle 1, 2 \rangle$.

Solution: This is a constant vector field. All vectors are identical in magnitude and orientation. In the image below, each vector is shown at half-scale so as not to clutter the image too severely.

This vector field is not radial nor does it suggest any rotation.

Example 4: Sketch $F(x, y) = \langle x + y, y - x \rangle$.

Solution: The vector field is shown below:

This vector field appears to have both radial and rotational aspects in its appearance.

Given a function $z = f(x, y)$, its gradient is $\nabla f = \langle f_x(x, y), f_y(x, y) \rangle$.

This is called a **gradient vector field** (or just **gradient field**).

It is also called a **conservative vector field**.

In such a case, the vector field is written as $F(x, y) = \nabla f = \langle f_x, f_y \rangle$.

Gradient vector fields have an interesting visual property:

The vectors in the vector field lie orthogonal to the contours of f .

Example 5: Given $f(x, y) = \frac{1}{2}$ $\frac{1}{2}x^2 + \frac{1}{2}$ $\frac{1}{2}y^2$, find **F**(*x*, *y*) = ∇f and sketch it along with the contour map of f .

Solution: The vector field is $F(x, y) = \nabla f = \langle f_x, f_y \rangle = \langle x, y \rangle$.

The contours of f are concentric circles of the form $\frac{1}{2}x^2 + \frac{1}{2}$ $\frac{1}{2}y^2 = k$ centered at the origin, the surface being a paraboloid with its vertex at (0,0,0) and opening upward.

Note that the vectors in \bf{F} are orthogonal to the contours of \bf{f} .

This is the same vector field as seen in Example 1. The vectors point in the direction of increasing *z*

Example 6: Given $f(x, y) = x + 2y$, find $F(x, y) = \nabla f$ and sketch it along with the contour map of f .

Solution: The vector field is $F(x, y) = \nabla f = \langle f_x, f_y \rangle = \langle 1, 2 \rangle$.

The surface of f is a plane tilting "upward" as x and y both increase in value.

Note that the contours of f are all lines of the form $x + 2y = k$, or $y = -\frac{1}{2}$ $\frac{1}{2}x + \frac{k}{2}$ 2 , and that the vectors in **F** are orthogonal to the contours of f , pointing in the direction of increasing z .

This is the same vector field as in Example 3.

Not all vector fields are gradient fields. Those in Examples 2 and 4 are not gradient fields.

There do not exist functions $z = f(x, y)$ such that $F(x, y) = \nabla f$ in these two examples.

If **F** is a gradient field, then there exists a function f such that $F(x, y) = \nabla f$.

This function f is called a **potential function**.

All constant vector fields $F(x, y) = \langle a, b \rangle$ are gradient fields, where $f(x, y) = ax + by$ is a potential function.

In R^3 , we would have $\mathbf{F}(x, y, z) = \langle a, b, c \rangle$, with potential function $f(x, y, z) = ax + by + cz$.

All vector fields of the form $F(x, y) = \langle M(x), N(y) \rangle$ are gradient fields, where a potential function is

$$
f(x,y) = \int M(x) dx + \int N(y) dy.
$$

If $F(x, y) = \langle M(x, y), N(x, y) \rangle$, then **F** is a gradient field if $M_v = N_x$. Otherwise, it is not. "Minks"

Example 7: Find the potential functions for $G(x, y) = \langle 2x, y^4 \rangle$.

Solution: For **G**, a potential function is $g(x, y) = \int 2x \, dx + \int y^4 \, dy = x^2 + \frac{1}{5}$ $\frac{1}{5}y^5$.

Constants of integration are not necessary.

If **G** is a gradient field, then it has infinitely-many potential functions, all equivalent up to its constant of integration.

Note that for **G** above, $g(x, y) = x^2 + \frac{1}{5}$ $\frac{1}{5}y^5 + 7$ is also a valid potential function.

Usually, we let any such constant be 0.

Paths that are orthogonal to the contours for each point in the path are called **streams**, or **streamlines**. Streamline are usually denoted by the psi symbol, $\psi(x, y)$.

In Example 5, streamlines would be of the form $y = kx$, and in Example 6, of the form $y = 2x + k$.

On a surface, a stream of water would flow orthogonally to the contours of the surface, always in the direction of steepest descent.

Example 8: Given $f(x, y) = x^3 + y^3 - 3x - 3y$, find **and sketch it along with the contour map of f.**

Solution: The vector field is

$$
\mathbf{F}(x, y) = \nabla f = \langle f_x, f_y \rangle = \langle 3x^2 - 3, 3y^2 - 3 \rangle.
$$

The vector field \bf{F} is shown at right with the contours of f :

 ρ^3 your boat Gently $\psi' < 0$. Merrily³.

Life = dream.