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Up to this point, we have presented vectors with constant components, for example,

1,2  and 2, −5,4 . We now allow the components of a vector to be functions of a 

common variable. 

For example, 𝐫 𝑡 = 2𝑡 + 1, 𝑡2 + 3  presents a function whose input is a scalar 𝑡, 

and whose output is a vector in 𝑅2. 

Such a function is called a vector-valued function and 𝑡 is called a parameter 

variable. 

The common notation is to write 𝐫 𝑡 = 𝑥(𝑡), 𝑦(𝑡)  for vector-valued functions in 

𝑅2, and 𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧(𝑡)  for vector-valued functions in 𝑅3. The number of 

parameter variables can be greater than one.



Example 1: Sketch 𝐫 𝑡 = 2𝑡 + 1, 𝑡2 + 3  for 

− 1 ≤ 𝑡 ≤ 2.

Solution: Let’s build an input-output table:

We then sketch vectors for each 𝑡 

such that its foot is at the origin:



This looks like a mess, but it is a truthful and literal representation of 𝐫 𝑡 = ۃ

ۄ
2𝑡 + 1, 𝑡2 +

3  for certain values of 𝑡 in the interval −1 ≤ 𝑡 ≤ 2. However, when representing the 

graph of a vector valued function, it is common to only show the position at the head of the 

vector, and the curve that results. 



Example 2: Sketch 𝐫 𝑡 = 𝑎 cos 𝑡 , 𝑎 sin 𝑡 , for 0 ≤ 𝑡 ≤ 2𝜋, and describe the curve that is 

traced out by the vectors.

The curve is a circle of radius a, centered at the 

origin. The bounds 0 ≤ 𝑡 ≤ 2𝜋  ensure that 

exactly one revolution of the circle is sketched.

Note that certain points on the path are given by 

ordered pairs. Remember that these are the 

heads of the vectors, which are not drawn. Thus, 

the point (0, 𝑎) represents the head of the vector

0, 𝑎  when 𝑡 = Τ𝜋 2 . The arrow shows the 

direction of increasing 𝑡, and the circle “starts” 

at the point (𝑎, 0) and ends at this same point, 

one revolution later.    Remember this one!



Example 3: Rewrite the function 𝑦 = 𝑓 𝑥 = 𝑥3 from (0,0) to (3,27) as a vector-valued 

function.

Solution: Any function of the form 𝑦 = 𝑓(𝑥) can be rewritten as a vector-valued 

function by letting 𝑥 𝑡 = 𝑡 and 𝑦 𝑡 = 𝑓(𝑡). Thus, the function 𝑦 = 𝑓 𝑥 = 𝑥3 from 

(0,0) to (3,27) can be re-written as

𝐫 𝑡 = 𝑡, 𝑡3  for 0 ≤ 𝑡 ≤ 3.

Note that 𝐫 0 = 0,0  and that 𝐫 3 = 3,27 . These are vectors whose heads lie at the 

points (0,0) and (3,27) respectively.



Example 4: Find the domain of 𝐫 𝑡 =

𝑡, 2𝑡,
1

3−𝑡
.

Solution: The domain is the largest subset 

of the real numbers for which all three 

component functions are defined 

simultaneously. 

Note that 𝑥 𝑡 = 𝑡  and 𝑦 𝑡 = 2𝑡  are 

defined for all real numbers 𝑡 , but that 

𝑧 𝑡 =
1

3−𝑡
 is not defined when 𝑡 = 3. 

Thus, the domain of 𝐫  is given by

𝑡 −∞, 3 ∪ 3, ∞ .

Example 5: Find the domain of 𝐫 𝑡 =

2

𝑡
, 4 − 3𝑡, 𝑒𝑡 .

Solution: The first component 𝑥 𝑡 =
2

𝑡
 

requires that 𝑡 ≠ 0 , and the second 

component 𝑦 𝑡 = 4 − 3𝑡  requires 

that 4 − 3𝑡 ≥ 0, or 𝑡 ≤
4

3
. 

There are no restrictions on 𝑡 implied 

by 𝑧 𝑡 = 𝑒𝑡. 

The domain of 𝐫  is given by

𝑡 −∞, 0 ∪ 0,
4

3
.



Example 6: Find a vector valued function that describes the line segment in 𝑅3 from 

(1, −2,5) to (3,1, −4).

Solution: Find the direction vector:

𝐯 = 3 − 1,1 − −2 , −4 − 5 = 2,3, −9 .

Using (1, −2,5) as the initial point, we have 1, −2,5 + 𝑡 2,3, −9  as the line segment 

using vector notation. As a vector-valued function, we have

𝐫 𝑡 = 1 + 2𝑡, −2 + 3𝑡, 5 − 9𝑡  for 0 ≤ 𝑡 ≤ 1.

Note that 𝐫 0 = 1, −2,5 , a vector whose head lies at the point (1, −2,5), and that 𝐫 1 =

3,1, −4 , a vector whose head lies at the point (3,1, −4).   Remember this one too!



Example 17: Describe 𝐫 𝑡 = 2 cos 𝑡 , 2 sin 𝑡 , 𝑡  for 𝑡 ≥ 0.

Solution: This is a curve in 𝑅3. Look at two of the components at a time:

The components 𝑥 𝑡 = 2 cos 𝑡 and 𝑦 𝑡 = 2 sin 𝑡 trace a circle of radius 2 repeatedly 

since t increases without bound. 

The components 𝑥 𝑡 = 2 cos 𝑡  and 𝑧 𝑡 = 𝑡  trace a cosine wave “upward”, e.g. 

assuming that x is the horizontal axis and z the vertical axis.

The components 𝑦 𝑡 = 2 sin 𝑡 and 𝑧 𝑡 = 𝑡 trace a sine wave “upward”.

The curve is a helix, which looks like a coiled spring. This helix has a radius of 2 centered 

around the positive z-axis, “wrapping” around the z-axis (but never touching it) as t 

increases in value.



Example 8: In 𝑅3, the circular cylinder 𝑥2 + 𝑦2 = 25 is intersected by the plane 𝑦 + 𝑧 =

4. Find a vector-valued function 𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧(𝑡)  that describes the curve formed 

by the intersection of these two surfaces.

Solution: There are many possible vector-valued functions that describe this curve. One 

possible way is to note that we can write 𝑥(𝑡) = 5 cos 𝑡 and 𝑦 𝑡 = 5 sin 𝑡 for 0 ≤ 𝑡 ≤ 2𝜋. 

Then, since 𝑦 + 𝑧 = 4, we have 𝑧 = 4 − 𝑦, so that 𝑧 𝑡 = 4 − 5 sin 𝑡. The curve of 

intersection is given by

𝐫 𝑡 = 5 cos 𝑡 , 5 sin 𝑡 , 4 − 5 sin 𝑡 ,  for 0 ≤ 𝑡 ≤ 2𝜋.



Example 9: A circular cylinder of radius 2 is centered at the origin such that the x-axis is 

the axis of symmetry of the cylinder. Describe this surface parametrically, using 𝑢 and 𝑣 as 

the parameter variables.

Solution: Since the x-axis is the axis of symmetry, we infer that the circular cross sections 

lie on planes parallel to the yz-plane. For example, a circle of radius 2 on the yz-plane (x = 

0) is described by 𝑦2 + 𝑧2 = 4. 

Using parameter variable 𝑢, we can describe the circle by letting 𝑦 = 2 cos 𝑢 and 𝑧 =

2 sin 𝑢, where the 2 represents the circle’s radius. Note that the circular cross-sections 

depend only on variable 𝑢. Thus, we can let 𝑥 = 𝑣, representing the extension of the circle 

into the positive and negative x direction, with no restrictions on 𝑣. The cylinder is 

described parametrically as

𝐫 𝑢, 𝑣 = 𝑣, 2 cos 𝑢 , 2 sin 𝑢 , 0 ≤ 𝑢 ≤ 2𝜋,  −∞ < 𝑣 < ∞.



Example 10: Describe the cone 𝑧 = 𝑥2 + 𝑦2 parametrically using variables 𝑢 and 𝑣.

Solution: Observe that cross sections of this surface with a plane 𝑧 = 𝑘 results in a circle of 

radius 𝑘. Thus, if we let 𝑧 = 𝑢, we can then define 𝑥 = 𝑢 cos 𝑣 and 𝑦 = 𝑢 sin 𝑣, which 

result in circles of radius 𝑢. 

Thus, we have 𝐫 𝑢, 𝑣 = 𝑢 cos 𝑣 , 𝑢 sin 𝑣 , 𝑢 , where 0 ≤ 𝑣 ≤ 2𝜋 and 𝑢 ≥ 0.



Differentiation

Given a vector-valued function 𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧(𝑡) , the derivative of r with respect 

to 𝑡 is given by

𝐫′ 𝑡 =
𝑑

𝑑𝑡
𝐫 𝑡 =

𝑑

𝑑𝑡
𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 =

𝑑

𝑑𝑡
𝑥 𝑡 ,

𝑑

𝑑𝑡
𝑦 𝑡 ,

𝑑

𝑑𝑡
𝑧 𝑡

= 𝑥′ 𝑡 , 𝑦′ 𝑡 , 𝑧′(𝑡) ,

assuming that the derivatives exist. Note that 𝐫′ 𝑡 = 𝑥′ 𝑡 , 𝑦′ 𝑡 , 𝑧′(𝑡)  is itself a 

vector-valued function. Visually, the vectors given by 𝐫′ 𝑡  can be shifted in such a way 

so that they are tangent to the curve traced out by 𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧(𝑡) .



Example 11: An object moves through 𝑅3 along a path defined by 𝐫 𝑡 = ۃ

ۄ
𝑡3, 2𝑡2 +

𝑡, 5𝑡  where all dimensions are in meters. Find the object’s velocity and its speed when 

𝑡 = 4 seconds.

Solution: The derivative of 𝐫 𝑡 = 𝑡3, 2𝑡2 + 𝑡, 5𝑡  is 𝐫′ 𝑡 = 3𝑡2, 4𝑡 + 1,5 . 

Thus, when 𝑡 = 4 seconds, the object has a velocity of 

𝐫′ 4 = 3 4 2, 4 4 + 1, 5 = 48,17,5

The object’s speed at 𝑡 = 4 seconds is 

𝐫′ 4 = 482 + 172 + 52 ≈ 51.2 meters per second.



Example 12: An object moves through 𝑅3 along a path defined by 𝐫 𝑡 = ۃ

ۄ
𝑡 + 3, 𝑡2 +

𝑡, 5𝑡 . Find the equation of the tangent line to this path when the object is at (7,20,20).

Solution. We need both a direction vector and a position vector. 

The location (7,20,20) corresponds to a position vector 7,20,20 , and setting this equal 

to 𝐫 𝑡 = 𝑡 + 3, 𝑡2 + 𝑡, 5𝑡 , we can deduce that 𝑡 = 4. 

The derivative is 𝐫′ 𝑡 = 1, 2𝑡 + 1, 5 , so the direction vector is 

𝐫′ 4 = 1, 2(4) + 1, 5 = 1,9,5

Thus, the object’s tangent line in vector form at this instant is 7, 20, 20 + 𝑡 1, 9, 5 , or 

equivalently, 7 + 𝑡, 20 + 9𝑡, 20 + 5𝑡 .



Integration

Given a vector-valued function 𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧(𝑡) , the indefinite integral of r with 

respect to 𝑡 is given by

න 𝐫 𝑡  𝑑𝑡 = න 𝑥 𝑡  𝑑𝑡 , න 𝑦 𝑡  𝑑𝑡 , න 𝑧 𝑡  𝑑𝑡 + 𝑎, 𝑏, 𝑐 ,

where 𝑎, 𝑏, 𝑐  is a vector composed of the constants of integration of the components of r.



Example 13: Find 𝐫 𝑡 =  𝐫′ 𝑡  𝑑𝑡, where 𝐫′ 𝑡 = 𝑒2𝑡 , 𝑡, sin 𝑡 , and 𝐫 0 = 0,0,0 . 

Solution: Note that 𝐫 𝑡 =  𝐫′ 𝑡  𝑑𝑡 + 𝐤, where k = 𝑎, 𝑏, 𝑐  is a constant vector. 

𝐫 𝑡 = න 𝐫′ 𝑡  𝑑𝑡 = න 𝑒2𝑡  𝑑𝑡 , න 𝑡 𝑑𝑡 , න sin(𝑡) 𝑑𝑡 +

=
1

2
𝑒2𝑡 ,

2

3
𝑡 Τ3 2, − cos 𝑡 + 𝑎, 𝑏, 𝑐 .

Since 𝐫 0 = 0,0,0 , we have 

0,0,0 =
1

2
𝑒2 0 ,

2

3
(0) Τ3 2, − cos(0) + 𝑎, 𝑏, 𝑐  0,0,0 =

1

2
, 0, −1 + 𝑎, 𝑏, 𝑐 .



This forces 𝑎 = −
1

2
, 𝑏 = 0 and 𝑐 = 1. Thus, 

𝐫 𝑡 =
1

2
𝑒2𝑡 ,

2

3
𝑡 Τ3 2, − cos 𝑡 + −

1

2
, 0,1

or simplified as 

𝐫 𝑡 =
1

2
(𝑒2𝑡 − 1),

2

3
𝑡 Τ3 2, 1 − cos 𝑡

Don’t confuse 𝐫 0 = 0,0,0  as being the constant vector 𝑎, 𝑏, 𝑐 .
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